[发明专利]基因测序数据压缩方法、系统及计算机可读介质有效
| 申请号: | 201710982696.6 | 申请日: | 2017-10-20 |
| 公开(公告)号: | CN110111851B | 公开(公告)日: | 2020-07-24 |
| 发明(设计)人: | 李根;宋卓;刘蓬侠;王振国;冯博伦 | 申请(专利权)人: | 人和未来生物科技(长沙)有限公司 |
| 主分类号: | G16B50/50 | 分类号: | G16B50/50 |
| 代理公司: | 湖南兆弘专利事务所(普通合伙) 43008 | 代理人: | 谭武艺 |
| 地址: | 410152 湖南省长沙*** | 国省代码: | 湖南;43 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基因 序数 压缩 方法 系统 计算机 可读 介质 | ||
本发明公开了一种基因测序数据压缩方法、系统及计算机可读介质,压缩方法包括遍历获取读长为Lr的读序列,针对每一条读序列生成短串K‑mer,选择原始基因字符串CS0并确定正负链类型d,通过预测数据模型P1获取每个短串K‑mer的预测字符c得到预测字符集PS,将读序列R的Lr‑k位、预测字符集PS编码后通过可逆函数进行可逆运算;将读序列R的正负链类型d、CS0及可逆运算结果压缩输出。本发明具有压缩率低,压缩时间短,压缩性能稳定的优点,不需要对基因数据进行精准比对,有较高的计算效率,预测数据模型P1的预测准确度越高,则可逆运算结果中的重复字符串就越多,压缩的压缩率就越低。
技术领域
本发明涉及基因测序和数据压缩技术,具体涉及一种基因测序数据压缩方法、系统及计算机可读介质。
背景技术
近年来,随着下一代测序技术(Next Generation Sequence, NGS)的持续进步,基因测序的速度更快,成本更低,基因测序技术得以在更加广泛的生物、医疗、健康、刑侦、农业等等许多领域被推广应用,从而导致基因测序产生的原始数据量以每年3到5倍、甚至更快的速度爆炸式增长。而且,每个基因测序样本数据又很大,例如一个人的55x全基因组测序数据大约是400GB。因此,海量的基因测试数据的存储、管理、检索和传输面临技术和成本的挑战。
数据压缩(data compression)就是缓解这个挑战的技术之一。数据压缩,是为了减少存储空间而把数据转换成比原始格式更紧凑形式的过程。原始的输入数据包含我们需要压缩或减小尺寸的符号序列。这些符号被压缩器编码,输出结果是编码过的数据。通常在之后的某个时间,编码后的数据会被输入到一个解压缩器,在这里数据被解码、重建,并以符号序列的形式输出原始数据。如果输出数据和输入数据始终完全相同,那么这个压缩方案被称为无损的(lossless),也称无损编码器。否则,它就是一个有损的(lossy)压缩方案。
目前,世界各国研究人员已经开发出多种用于基因测序数据的压缩方法。基于基因测序数据的用途,其压缩后必须随时可以重建、恢复成原始数据,因此,有实际意义的基因测序数据压缩方法都是无损压缩。如果按总的技术路线分类,可以将基因测序数据压缩方法分成三大类:通用(general purpose)压缩算法、有参考基因组(reference-based)的压缩算法和无参考基因组(reference-free)的压缩算法。
通用压缩算法,就是不考虑基因测序数据的特点,采用通用的压缩方法进行数据压缩。
无参考基因组压缩算法,就是不使用参考基因组,只是利用基因测序数据自身的特点,采用某种压缩方法对目标样本数据直接进行数据压缩。已有的无参考基因组压缩算法常用的压缩方法有霍夫曼编码、以LZ77和LZ78为代表的字典方法、算术编码等基础的压缩算法及其变种和优化。
有参考基因组压缩算法,就是选取某个基因组数据作为参考基因组,利用基因测序数据自身的特点,以及目标样本数据和参考基因组数据之间的相似性,间接进行数据压缩。已有的有参考基因组压缩算法常用的相似性表示、编码和压缩方法主要还是霍夫曼编码、以LZ77和LZ78为代表的字典方法、算术编码等基础的压缩算法及其变种和优化。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于人和未来生物科技(长沙)有限公司,未经人和未来生物科技(长沙)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710982696.6/2.html,转载请声明来源钻瓜专利网。





