[发明专利]基于区域增长和眼动模型的全景图像显著性检测方法有效

专利信息
申请号: 201710947581.3 申请日: 2017-10-12
公开(公告)号: CN107730515B 公开(公告)日: 2019-11-22
发明(设计)人: 李革;朱春彪;黄侃 申请(专利权)人: 北京大学深圳研究生院
主分类号: G06T7/11 分类号: G06T7/11;G06K9/62
代理公司: 11360 北京万象新悦知识产权代理有限公司 代理人: 黄凤茹<国际申请>=<国际公布>=<进入
地址: 518055 广东省深*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 区域 增长 模型 全景 图像 显著 检测 方法
【说明书】:

发明公布了一种基于区域增长和眼动模型的全景图像显著性检测方法,使用区域生长和固定预测模型,实现全景图像的自动突出物体检测;包括:针对原始图像进行基于区域增长的检测,通过区域增长算法粗略提取与其邻居相比具有显著不同密度的区域,得到密度重大差异区域;通过眼动固定点预测,得到突出区域的显著性值;进行最大值归一化后求和;采用优化测地线方法,使得更均匀地增强突出区域;即检测得到全景图像的显著性。本发明方法能够解决现有方法的显著性检测精确度、健壮性不够,不适用于全景图片的问题,使全景图像中的显著性区域更精准地显现出来,为后期的目标识别和分类等应用提供精准且有用的信息。

技术领域

本发明涉及图像处理、计算机视觉和机器人视觉技术领域,尤其涉及一种利用区域增长算法和眼动模型进行全景图像的显著性检测的方法。

背景技术

人眼的固有和强大的能力是快速捕获场景中最突出的地区,并将其传递到高级视觉皮层。注意力选择降低了视觉分析的复杂性,从而使人类视觉系统在复杂场景中效率相当高。作为预处理程序,许多应用程序受益于显着性分析,例如检测异常模式,分割原始对象,生成对象提案,等等。显著性的概念不仅在早期的视觉建模中被研究,而且在诸如图像压缩,对象识别和跟踪,机器人导航,广告等领域也有着广泛的应用。

早期的计算显著性的工作旨在模拟和预测人们对图像的注视。最近该领域已经扩展到包括整个突出区域或对象的细分。

大部分工作根据中心环绕对比度的概念,提取与周边地区相比具有显著特征的突出区域。此外,还可以使用前景对象和背景的空间布局的附加现有知识:具有很高的属于背景的可能性,而前景突出对象通常位于图像中心附近。已经成功地采用这些假设来提高具有常规纵横比的常规图像的显着性检测的性能。近来,产生广泛视野的全景图像在各种媒体内容中变得流行,在许多实际应用中引起了广泛的关注。例如,当用于诸如头戴式显示器的可穿戴设备时,虚拟现实内容表现出广泛的视野。用于自主车辆的环视监控系统通过组合在不同观看位置拍摄的多个图像来使用全景图像。这些全景图像可以通过使用特殊装置直接获得,或者可以通过使用图像拼接技术组合几个具有小纵横比的传统图像来生成。然而,用于检测常规图像显著性的假设并不能完全反映全景图像的特征。因此,现有技术难以实现高效的全景图像处理,现有的全景图像的显著性检测方法的精确度、健壮性均有待提高。

发明内容

为了克服上述现有技术的不足,本发明提供一种利用区域增长算法和眼动模型进行全景图像的显著性检测的方法,能够解决现有方法的显著性检测精确度、健壮性不够,不适用于全景图片的问题,使全景图像中的显著性区域更精准地显现出来,为后期的目标识别和分类等应用提供精准且有用的信息。

本发明的原理是:与常规图像相比,全景图像具有不同的特征。首先,全景图像的宽度比高度大得多,因此背景分布在水平伸长的区域上。其次,全景图像的背景通常由几个同质区域组成,如天空,山地和地面。此外,典型的全景图像可以包括具有不同特征和尺寸的多个前景对象,它们任意地分布在图像各处。对于这些特征,难以设计从输入全景图像直接提取多个显著区域的全局方法。本发明发现空间密度模式对于具有高分辨率的图像是有用的。因此,本发明首先采用基于区域生长的全景图像的空间密度模式检测方法来粗略提取初步对象。将眼固定模型嵌入到框架中,以预测视觉注意力,这是符合人类视觉系统的方法。然后,通过最大值归一化将先前得到的显著性信息相融合,得出粗略的显著性图。最后,使用测地线优化技术来获得最终的显著性图。

本发明提供的技术方案是:

基于区域增长和眼动模型的全景图像显著性检测方法,使用区域生长和眼动固定点预测模型(简称为眼动模型),实现全景图像的自动突出物体检测;包括如下步骤:

1)针对原始图像进行基于区域增长的检测,通过区域增长算法粗略地提取与其邻居相比具有显著不同密度的区域;

其中,重大差异的区域可以分为三类:1)过密度的区域,2)密度不足的区域,3)由山脊或沟渠包围的地区。具体包括如下过程:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学深圳研究生院,未经北京大学深圳研究生院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710947581.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top