[发明专利]一种基于深度学习算法的防窃电系统及其防窃电方法有效
申请号: | 201710919165.2 | 申请日: | 2017-09-30 |
公开(公告)号: | CN107966600B | 公开(公告)日: | 2021-03-19 |
发明(设计)人: | 何行;夏水斌;何欢;张芹;谢玮;冉艳春;余鹤;董重重;孙秉宇;田猛;王汪兵;王先培 | 申请(专利权)人: | 国家电网公司;国网湖北省电力公司电力科学研究院;武汉大学 |
主分类号: | G01R11/24 | 分类号: | G01R11/24;G06N3/04 |
代理公司: | 武汉楚天专利事务所 42113 | 代理人: | 雷速 |
地址: | 100031*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 算法 防窃电 系统 及其 方法 | ||
一种基于深度学习算法的防窃电系统及其防窃电方法,包括在线识别疑似窃电用户模块和离线训练深度学习网络模块,在线识别疑似窃电用户模块用于识别疑似窃电用户,离线训练深度学习网络模块用于确定在线识别疑似窃电用户模块中深度学习网络各个网络参数;可以有效利用现有用电信息采集系统的数据,提高数据的利用率;成本低廉,只需要在现有用电信息采集系统中增加基于深度学习的防窃电算法模块,不需要增加其它硬件;识别有嫌疑的窃电用户正确率较高。
技术领域
本发明涉及一种防窃电方法,具体地说是基于深度学习算法的防窃电系统及其防窃电方法。
背景技术
当今,电能是十分重要的清洁能源。但是,因为人们追求经济利益,窃电现象开始大量滋生,给各个地区都造成了利益损失。并且,因为窃电者的窃电行为而产生的人员伤亡与设备损坏也层出不穷,实际上,因窃电导致事故所造成的间接损失则更为巨大。由此可见,防窃电工作的重要意义。伴随着防窃电技术及措施的改进,窃电手段不断的提高,防窃电问题,需要更多人员的学习,以及管理专业人员不断地去研究、破解。
现有防窃电手段的确取得了一定的成效,如通过对电能表进行集中设置以及封紧锁牢的措施,避免用户随便接触电能表;统一采取封口压下后无法恢复的封装方法,并且都封上号码来一起记录管理;使用有禁止逆转功能的电能表,供电厂商订货时要求厂家设计配有止逆功能的电度表,杜绝反相电流窃电。但随着科技的进步,高科技窃电的花样也越来越多,现有的防窃电技术已经无法很好的防范种类繁多的窃电行为。作为智能电网关键技术之一,用电信息采集系统由用户端的电能计量表、上位机数据管理系统和用于其通信的网络组成,兼顾了信息采集和负荷监控的基础功能。它的整合应用是智能电网的必然趋势,为满足智能配电网的互动性搭建了一个更高的平台。实施先进的用电信息采集系统,通过其采集的用电数据分析判断窃电用户是目前的研究热点之一。然而,由于用电信息采集系统每隔一个固定时间点就会采集用户的用电数据,以用电信息采集系统中的 SCADA为例,每隔3~4s采集一次用电数据,10000个遥测点每年将产生 1.03TB的数据。因此,利用用电信息采集系统识别窃电用户面临海量数据的困境。
深度学习是机器学习中的一个新兴的领域,也即人工智能中的一个热门的方向。它的概念是基于神经网络的,与传统的人工神经网络相区别的点在于隐含层的增多。如此一来就可以训练海量的数据,学习有用的特征,最终达到高精确度的分类和预测。实际上就是通过重新排列组合低层的特征映射,在形成抽象的高层的特征映射后表示不同的属性类别。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。
相比其他方法,深度学习具有很强的数据学习能力和泛化能力,因此可以用来实现智能的防窃电,更高效地解决窃电问题。
发明内容
本发明的目的是为给生活中的窃电问题提供一种基于深度学习算法的防窃电方法。
本发明采用的技术方案是:一种基于深度学习算法的防窃电系统,其特征在于:包括在线识别疑似窃电用户模块和离线训练深度学习网络模块,在线识别疑似窃电用户模块用于识别疑似窃电用户,离线训练深度学习网络模块用于确定在线识别疑似窃电用户模块中深度学习网络各个网络参数。
进一步的,所述的基于深度学习算法的防窃电系统的防窃电方法,其特征在于:步骤包括:
a、利用用电信息采集系统,获取用户用电数据,包括有功功率W有功、无功功率W无功、谷值功率W谷值、、峰段功率W峰值、平值功率W平值以及功率等数据;
有功功率:W有功=(M本月有功-M上月有功)·m,m表示倍率,M代表抄表值;
无功功率:W无功=(M本月无功-M上月无功)·m;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国家电网公司;国网湖北省电力公司电力科学研究院;武汉大学,未经国家电网公司;国网湖北省电力公司电力科学研究院;武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710919165.2/2.html,转载请声明来源钻瓜专利网。