[发明专利]基于Zbar的条形码图像识别方法有效

专利信息
申请号: 201710884845.5 申请日: 2017-09-26
公开(公告)号: CN107679437B 公开(公告)日: 2021-08-03
发明(设计)人: 郑德生 申请(专利权)人: 四川元匠科技有限公司
主分类号: G06K7/14 分类号: G06K7/14;G06K9/32;G06K9/46
代理公司: 成都华风专利事务所(普通合伙) 51223 代理人: 徐丰;张巨箭
地址: 610000 四川省成都*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 zbar 条形码 图像 识别 方法
【说明书】:

发明涉及一种基于Zbar的条形码图像识别方法,包括以下步骤:101、将源图进行图像压缩得到缩略图,根据直接识别法识别缩略图条形码;若识别成功则转到结束流程,否则执行下一程序;102、将源图进行图像增强得到增强图,根据直接识别法识别增强图条形码;若识别成功则转到结束流程,否则执行下一程序;103、将源图进行图像压缩得到压缩图,根据条码区域识别法检测压缩图的倾斜角度,然后,使用该倾斜角矫正源图和/或压缩图得到目标图,在目标图中定位矩形区域并检测条形码;若识别成功则转到结束流程,否则显示错误信息并转到结束流程;104、结束流程。本发明的递进式的条形码压缩识别算法,在速度和识别率上都优于直接识别法和条码区域识别法。

技术领域

本发明涉及条形码识别技术领域,特别是涉及一种基于Zbar的条形码图像识别方法。

背景技术

条形码是将宽度不等的多个黑条和空白,按一定的编码规则排列,用以表达一组信息的图形标识符。随着科技的迅速发展,条形码技术日趋成熟,在商品流通的各个领域皆有应用。条形码上承载着商品的各种信息,是供应链管理的基础技术,是管理现代化的重要手段之一。对条形码的精确识别大大加快商品流通,增强企业竞争力。

当前图像式条形码识别主要采取基于软件编程技术和硬件技术两种方案。与硬件识别系统相比,基于软件编程技术的识别方案具有非接触性、效率高以及成本低廉等优点,识别系统具有较好的灵活性和较低的成本,发展潜力更大。其识别方式主要有两种:其一是根据条形码编码规则,利用编码原理识别。其二是使用开源工具包识别。由于每种条形码对应一种识别算法,所以方式一的编程像中的条形码信息。当前开源工具包主要有Zbar和ZXing,都可用于多种格式条形码。ZBar工具包基于C语言编写,解码效率高,作为windows平台首选。

基于Zbar工具包的识别方法有直接识别法和条形码区域识别法。直接识别法算法简单,流程可分为图片读取、灰度化以及调用Zbar识别三步,在识别较小图像时表现很好,但对于复杂图像,识别速度和准确度不佳。条形码区域识别法识别流程由图像校正、条码区域截取以及调用Zbar识别三个模块组成。条码区域法适用于所有图像,但由于流程复杂以及矫正无倾斜图像导致耗时较长。

发明内容

为了实现上述目的,本发明提供了以下技术方案:

本发明提供一种基于Zbar的条形码图像识别方法,包括以下步骤:

101、将源图进行图像压缩得到缩略图,根据直接识别法识别缩略图条形码;若识别成功则转到结束流程,否则执行下一程序;和/或

102、将源图进行图像增强得到增强图,根据直接识别法识别增强图条形码;若识别成功则转到结束流程,否则执行下一程序;和

103、将源图进行图像压缩得到压缩图,根据条码区域识别法检测压缩图的倾斜角度,然后,使用该倾斜角矫正源图和/或压缩图得到目标图,在目标图中定位矩形区域并检测条形码;若识别成功则转到结束流程,否则显示错误信息并转到结束流程;和

104、结束流程:显示识别信息,算法结束。

与现有技术相比,本发明具有以下优点:

本发明的基于Zbar的条形码图像识别方法,利用直接识别法和条码区域识别法结合成一种递进式的条形码压缩识别算法,在速度和识别率上都优于直接识别法和条码区域识别法,能够在较短时间内完成条码识别,达到较高识别率。

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。

附图说明

图1为本发明的实施例的流程框图;

图2为本发明的识别法实施例流程图;

图3为本发明的识别法实施例所采用的直接识别法流程图;

图4为本发明的识别法实施例所采用的条码区域识别法流程图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川元匠科技有限公司,未经四川元匠科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710884845.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top