[发明专利]一种星载图像辅助导航方法有效

专利信息
申请号: 201710823612.4 申请日: 2017-09-13
公开(公告)号: CN107631728B 公开(公告)日: 2020-08-21
发明(设计)人: 徐国栋;张兆祥;刘明;邢雷;王梓霖;张光宇;朱晏辰 申请(专利权)人: 哈尔滨工业大学
主分类号: G01C21/20 分类号: G01C21/20
代理公司: 哈尔滨华夏松花江知识产权代理有限公司 23213 代理人: 岳昕
地址: 150001 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图像 辅助 导航 方法
【权利要求书】:

1.一种星载图像辅助导航方法,其特征在于:所述星载图像辅助导航方法包括以下步骤:

步骤一、对在轨图像进行图像压缩,在压缩过程中计算图像梯度值;

步骤二、加载模板图像,根据压缩过程中获取的不同尺度下的图像梯度值的黑塞矩阵,进行多尺度的黑塞矩阵特征值求取以及多尺度金字塔运算,并通过最大值准则得到特征点;

步骤三、根据在轨图像的特征点和模板图像的特征点,采用随机抽样一致性算法进行特征点匹配,得到两个图像之间的仿射变换矩阵;然后建立相机运动模型,将图像偏移量转换为姿态角变化量;

步骤一的具体过程如下:

在FPGA在轨图像处理平台中,在图像经过电子学处理送入平台进行压缩时,进行5/3提升式小波变换,同时在小波变换时实施图像梯度值的求取;利用中心点邻域的值进行图像梯度值的求取:

其中y(n)为压缩后的下一级图像像素值,x(n)指当前级图像像素值,Dx是图像横向的梯度值,Dy是图像纵向的梯度值;Dxy是图像在45度方向上的梯度值,y1是中间变量,n指图像像素的索引值;在第一级图像压缩之后,获得的梯度值与图像高频分量一同输入到公共存储区中进行保存。

2.根据权利要求1所述的一种星载图像辅助导航方法,其特征在于:步骤二中对压缩图像进行多尺度特征点提取的具体步骤为:

针对获取的图像梯度值,根据特征值原理,通过对梯度特征值的求取进行特征点判决;计算在轨图像上的像素点I在压缩图像第m层的黑塞矩阵为:

其中,Dx(I,m)是在轨图像上的像素点I在压缩图像第m层横向的梯度值,Dy(I,m)是在轨图像上的像素点I在压缩图像第m层纵向的梯度值,Dxy(I,m)是在轨图像上的像素点I在压缩图像第m层在45度方向上的梯度值;

利用黑塞矩阵H的行列式进行特征值的判别:

det(H)=DxDy-wDxy2 (7)

其中w为近似系数,公式(7)取最大值时对应的像素点是像素点阵附近的特征点,采用如下判决式进行特征点筛选:

S=max(det(H,m),Threshold)+max(det(H,m-1),det(H,m),det(H,m+1)) (8)

Threshold指的是预设极值,S指的是阈值;阈值为自适应的,将特征点数目作为调整目标值,当提取的特征点少于预设的特征点数目S*时,通过调整阈值S以增加特征点,直到总的特征点数目符合要求;公式表述如下:

Threshold=argmin(S>=S*,Threshold) (9)。

3.根据权利要求2所述的一种星载图像辅助导航方法,其特征在于:步骤三中采用随机抽样一致性算法进行特征点匹配的具体步骤为:

根据在轨图像和模板图像之间存在的仿射变换,即针对模板图像中的任一像素点I′=(a′,b′)和对于在轨图像中的像素点I=(a,b),存在如下对应关系:

其中(a′,b′)为I′的平面坐标,(a,b)为I的平面坐标,A代表旋转矩阵,B代表平移矩阵,用如下参数表示:

式中θ表示旋转角度,b1、b2表示平移的像素大小;

然后用随机抽样一致性算法解出仿射变换矩阵。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710823612.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top