[发明专利]基于ISLS的极化信道XPD估计算法有效
申请号: | 201710822733.7 | 申请日: | 2017-09-13 |
公开(公告)号: | CN107733819B | 公开(公告)日: | 2020-07-03 |
发明(设计)人: | 刘芳芳;王炳程;冯春燕;赵殊伦 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | H04L25/02 | 分类号: | H04L25/02;H04B7/00;H04B7/0413;H04B7/10 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 isls 极化 信道 xpd 估计 算法 | ||
本发明公开了一种基于ISLS的极化信道XPD估计方法。首先,建立了在双极化信道下基于导频序列的收发模型;其次,提出了在接收端对双极化信道XPD进行估计的方法。在该方法中,在接收端我们在LS估计方法的基础上引入散射因子γ并通过不断迭代来降低信道系数估计误差,从而相比于LS算法我们可以获取更加精确的信道系数值。接着我们通过极化信道矩阵相乘取均值获取极化信道的自相关矩阵。由于XPD是极化信道自相关矩阵的参数,所以我们可以通过极化信道自相关矩阵来获得极化信道的XPD值。最后,理论和仿真分析得到,该方法能够有效提升XPD估计精度。
技术领域
本发明属于无线通信技术领域,是一种在接收端对XPD进行估计的方法,具体而言是一种利用信道统计信息和迭代的方式来提升XPD估计性能的估计算法。
背景技术
极化技术,如极化分集、双极化Massive MIMO和极化调制在无线通信中已经得到了广泛的应用。然而复杂的无线信道特性将产生复杂多变的去极化效应,如交叉极化鉴别度(Cross Polarization Discrimination:XPD),将严重影响极化技术的性能。去极化效应描述的是双极化信道下共极化信道和交叉极化信道之间的功率泄漏,由此造成的交叉极化干扰将会降低系统数据传输速率和提高误码率,严重的降低系统性能。
目前针对去极化效应XPD的研究主要关注XPD已知的情况下,利用XPD来提升系统性能。在双极化信道下,研究者利用已知的XPD提出了一种码本切换方案去适应双极化信道环境,该方案可以有效的适应双极化信道从而提升系统容量。此外,研究者针对XPD对极化调制的影响,提出了一种对抗XPD效应的补偿方法,该方法通过在发射端引入补偿因子,提升了XPD效应影响下的极化调制误码率性能。然而,对如何获取XPD需要进一步的研究。
发明内容
本发明提出了一种在接收端对XPD进行估计的方法,目的是在接收端获取极化信道的XPD信息。XPD描述的是在双极化信道下同极化信道和交叉极化信道之间的功率泄漏。它会在不同程度上改变信号的极化状态,从而降低极化信息处理的系统性能。为了获得极化信道的XPD值,本发明提出了一种在接收端对XPD进行估计的方法,即在发射端发射导频序列,在接收端我们在LS估计方法的基础上引入散射因子γ并通过不断迭代来降低信道系数估计误差,从而相比于LS算法我们可以获取更加精确的信道系数值。接着我们通过极化信道矩阵相乘取均值获取极化信道的自相关矩阵。由于XPD是极化信道自相关矩阵的参数,所以我们可以通过极化信道自相关矩阵来获得极化信道的XPD值。
基于迭代的散射因子(ISLS)的极化信道XPD估计算法,具体步骤如下:
步骤一:建立双极化信道模型;
双极化天线在节省天线距离,提高极化分集增益显示了极大的优势并且得到了广泛的应用。因此本发明的信道模型选择了双极化信道模型。双极化信道模型由空间衰落矩阵和极化衰落矩阵哈达玛乘积得到。由于位于发送端的水平、垂直极化天线对和接收端的水平、垂直极化天线对均处于同一空间位置,因此双极化信道元素经历相同的空间衰落。
步骤二:利用ISLS估计方法获取极化信道系数;
为了获得更加精确的信道系数,本发明在LS估计方法的基础上引入散射系数γ通过最小化均方误差来降低对信道系数的估计误差,为了进一步降低对信道系数的估计误差提升估计性能,本发明引入迭代的方法,随着迭代次数的增加,估计误差会不断降低并趋于稳定。
步骤三:利用信道系数获得极化信道自相关矩阵;
若直接利用XPD的计算公式进行估计会由于分子分母的估计误差的存在导致算法的估计性能较差,因此我们通过估计信道的极化相关矩阵来估计信道的XPD值。我们可以通过相乘信道矩阵和它的共轭转置并求均值来获得信道的极化信道相关矩阵。
步骤四:利用极化信道相关矩阵来获取XPD值;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710822733.7/2.html,转载请声明来源钻瓜专利网。