[发明专利]基于LCD与堆叠自动编码器的滚动轴承故障诊断方法有效
申请号: | 201710810504.3 | 申请日: | 2017-09-11 |
公开(公告)号: | CN107702922B | 公开(公告)日: | 2020-10-09 |
发明(设计)人: | 赵晓平;周子贤;吴家新 | 申请(专利权)人: | 南京信息工程大学 |
主分类号: | G01M13/045 | 分类号: | G01M13/045 |
代理公司: | 江苏海越律师事务所 32402 | 代理人: | 唐小红 |
地址: | 210044 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 lcd 堆叠 自动 编码器 滚动轴承 故障诊断 方法 | ||
本发明提出的基于LCD与堆叠自动编码器的滚动轴承故障诊断算法,包括如下步骤:采集滚动轴承的原始振动信号;先用LCD从原始振动信号中筛选出多个ISC分量,将其重构为两个频率段后转成频域信号;然后结合自动编码器提取两个频段信号的初步特征;最后,将两频段信号拼接后输入堆叠自动编码器并通过Softmax分类器进行分类,完成故障诊断。本发明不但能够从海量的数据中自适应的学习故障特征,而且在诊断精度方面优于传统故障诊断算法,可用于大数据环境下的滚动轴承故障诊断。
技术领域
本发明涉及机械设备的故障诊断技术领域,尤其涉及一种基于LCD与堆叠自动编码器的滚动轴承故障诊断方法。
背景技术
滚动轴承在机械设备中应用广泛,一旦损坏会引发机械故障甚至造成安全事故及财产损失。因此,对滚动轴承的状态监测与故障诊断具有十分重要的意义。滚动轴承通常工作于大型机械内部,其信号具有成分复杂、特征能量微弱、非线性等特点,使得故障诊断较为困难。此外,随着机械设备群的规模不断变大、效率不断提高,故障检测设备获得的数据量也急剧增大。因此研究适用于“大数据”背景下的滚动轴承故障检测方法显得非常重要。
发明内容
本发明提供一种基于LCD与堆叠自动编码器的滚动轴承故障诊断方法,用以解决现有的滚动轴承故障诊断方法鲁棒性较低、诊断精度较差的问题。
为了解决上述问题,本发明提供了一种基于LCD与堆叠自动编码器的滚动轴承故障诊断方法,包括如下步骤:
步骤一、采集滚动轴承的原始振动信号S(t);
步骤二、所述原始振动信号S(t)预处理:将采集的原始振动信号S(t)使用LCD进行分解;把分解得到的多个ISC分量重构为高低两个频率段,并使用傅里叶变转换将每个频率段转换为频域信号;其中,将采集的振动信号S(t)使用LCD进行分解的具体步骤为:
1)确定原始振动信号S(t)的极值点mk、以及与所述极值点mk对应的时刻tk;其中,k=1,2...,M,M为极值点个数,且M为正整数;
2)根据公式(1)计算任意两个相邻的极值点之间的连线lk在tk时刻的函数值Ak,再根据公式(2)计算函数值Ak与tk时刻的极值点mk之间的差Lk,式中α的值取0.5;
Lk=α*Ak+(1-α)mk (2)
根据公式(3)采用三次样条函数拟合(tk,Lk)得到均值曲线mli1,i为提取第i个ISC分量时拟合的均值曲线,然后将mli1从原始振动信号S(t)中分离;
Si(t)=S(t)-mli1 (3)
3)若Si(t)满足ISC判据条件,输出Si(t)并令ISC1=Si(t),Si(t)是第一个ISC分量记ISC1=Si(t),并令i=i+1,其中i为正整数;否则将Si(t)代替原始振动信号S(t),重复步骤1)、步骤2)直到Si(t)满足ISC条件;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710810504.3/2.html,转载请声明来源钻瓜专利网。