[发明专利]一种基于频谱特征的宽带频谱感知方法有效

专利信息
申请号: 201710795476.2 申请日: 2017-09-06
公开(公告)号: CN107517089B 公开(公告)日: 2020-09-01
发明(设计)人: 齐丽娜;李婷婷 申请(专利权)人: 南京邮电大学
主分类号: H04B17/382 分类号: H04B17/382;H04B17/391
代理公司: 南京知识律师事务所 32207 代理人: 李吉宽
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 频谱 特征 宽带 感知 方法
【权利要求书】:

1.一种基于频谱特征的宽带频谱感知方法,其特征在于,所述方法采用瑞利衰落信道模型,将主用户的频谱特征当做唯一的先验条件,通过比较接收信号的功率谱密度与主用户的频谱信息,求出信号功率值和频谱占用情况;

所述方法首先建立基于瑞利衰落信道的信号传输模型,其次根据主用户和接收信号的自相关函数建立函数关系,然后对信号进行压缩采样,再利用基于频谱特征的压缩感知技术,采用相关匹配策略,通过保证残差自相关函数的半正定特性,利用l1-最小化公式推导出算法中的权值表示,最后利用加权正交匹配追踪(Weighted Orthogonal MatchingPursuit,WOMP)算法识别主用户占用的频谱,估计对应的功率值水平;

所述方法接收信号经过多陪集采样后自相关函数模型,包括:设表示主用户可能的频率位置的集合,并且令表示能包含的网格,γi(τ)和γn(τ)分别表示干扰和噪声的自相关函数,p(ωm)是对应于主要用户的的发射功率,γcm(τ,ωm)表示参考信号xc(t)在载波频率ωm处的参考自相关函数,定义稀疏向量p为检测函数的输出,零值直接表明在ω处不存在主用户,非零值直接表明在ω处主用户存在;

所述方法对通过瑞利信道后的信号y(t)进行压缩采样,采用的是多陪集(Multi-coset,MC)采样:给定接收的多频带信号y(t),在一定时刻ti(n)得到MC采样样本,其中L0是适当的整数,i=1,2...,k,n∈Z,集合{ci}包含从{0,1...,L-1}中选择的k个不同的整数,注意到MC采样过程被等效为经典的以块的形式进行奈奎斯特采样,从每块的L个样本中周期性保留k个样本,未丢弃的样本由集合{ci}指定,每个序列的周期等于LT;

所述方法将zf看做y(t)中均匀奈奎斯特采样样本的第f块,每块长度为L,多陪集采样后的总的样本数据可用Y表示,总块数为Nf,为了将采集的样本与原始奈奎斯特采样信号相关联,令yf表示每块的采样样本,每块有k个非均匀样本,Φ∈Ck×L是一个矩阵,它的作用是从zf中非均匀选择k个样本,Φ通过对单位矩阵IL非均匀抽取k行实现。

2.根据权利要求1所述的一种基于频谱特征的宽带频谱感知方法,其特征在于,所述方法建立基于瑞利衰落信道的信号传输模型包括:无线信号经过单径瑞利衰落及加性高斯白噪声(additive white gaussian noise,AWGN)的干扰,到达接收机,设置如下参数:x(t)是发送信号;α(t)是无线信道的衰落因子;为导致的传输损耗;ζ(t)为瑞利衰落随机过程;n(t)为加性高斯白噪声;i(t)为干扰。

3.根据权利要求1所述的一种基于频谱特征的宽带频谱感知方法,其特征在于,所述方法基于相关匹配的压缩频谱感知,包括:令{Ry(k)}表示奈奎斯特采样信号{y(n)}的相关性,Ry是维度为L×L的相关矩阵,将{xc(n)}定义为奈奎斯特采样候选信号,{Rc(k)}定义为{xc(n)}的相关函数,相关矩阵表示采样样本相关性的平均值,基带参考自相关是从主用户的频谱特征中抽取出来的,将纯音的自相关函数用e(ωm)eHm)给出,e(ωm)∈CL×1是频率转向向量,利用e(ωm)在感知频率ωm处形成的秩为1的矩阵对Rc调制,调制参考相关性Rcmm)必须也以对信号同样的方法进行压缩,利用相同的采Ry样矩阵Φ。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710795476.2/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top