[发明专利]一种基于心音检测和机器学习算法的心脏病筛查系统在审
申请号: | 201710706473.7 | 申请日: | 2017-08-17 |
公开(公告)号: | CN107348971A | 公开(公告)日: | 2017-11-17 |
发明(设计)人: | 余秦;赵鹏军;张执南 | 申请(专利权)人: | 上海交通大学 |
主分类号: | A61B7/04 | 分类号: | A61B7/04 |
代理公司: | 上海伯瑞杰知识产权代理有限公司31227 | 代理人: | 孟旭彤 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 心音 检测 机器 学习 算法 心脏病 系统 | ||
技术领域
本发明涉及心脏病检测装置领域,具体地说,特别涉及到一种基于心音检测和机器学习算法的心脏病筛查系统。
背景技术
心脏病作为对现代人危害最大的疾病之一,需要医生或患者对心率进行实时监测以预防心脏病的危害。现代医院的检测手段复杂价格昂贵,而检查结果往往50%都没有心脏病。对于被检测者而言,传统的检测手段是时间和金钱上的浪费。超声波在临床操作复杂,费时费钱;心电图无法准确预测先天性心脏病,上述两种技术均难于应用大规模临床先心病的筛查。
为了解决上述问题,现有技术中已有通过采用用心音检测的方法来检测心脏病,但其仍然存在不足,问题如下:
1、抗干扰能力差,少有涉及噪音隔离及利用硬件消除的设计。
2、目前心音信号处理算法大多采用传统的信号处理方法,信号处理效果差,只能适用于特定要求下的病人复现性差。
3、现有技术均只是针对部分病人的数据,没有利用到大量的病人数据,没有建立数据库,所采用的技术及其方案均具有局限性。
发明内容
本发明的目的在于针对现有技术中的不足,提供本发明旨在改变,提出一种心脏病筛查系统,提供一种采用噪音隔离硬件设计、新型信号处理算法、大量数据的数据库系统的筛查设备及对应的信号分析管理系统,从而解决心脏病检查时排队久、费用高的问题。
本发明所解决的技术问题可以采用以下技术方案来实现:
一种基于心音检测和机器学习算法的心脏病筛查系统,包括信号采集模块、心音数据分析模块和数据库模块;
所述信号采集模块包括壳体、以及设置在所述壳体内的噪音采集单元和心音采集单元;
所述噪音采集单元安装在壳体的顶部,其包括与壳体固定连接的上安装壳体,在所述上安装壳体上安装有噪音采集器、以及与所述噪音采集器连接的噪音传感器;
所述心音采集单元安装在壳体的底部,其包括通过卡槽与壳体固定连接的不锈钢腔体、以及安装在不锈钢腔体上的下安装壳体,在所述下安装壳体上安装有心音采集器、以及与所述心音采集器连接的心音传感器;
所述心音数据分析模块包括预处理电路,预处理电路的输入端与噪音传感器和心音传感器的数据输出端连接,预处理电路包括依次设置的前级放大器、滤波器、中间放大器、后级放大器和A/D转换器,心音数据和噪音数据经预处理电路处理后由蓝牙天线发送至云端,并利用基于机器学习算法得到的模型进行数据分析,数据分析后得到的数据与数据库模块中的心脏病数据进行比对;
所述数据库模块存储有病人基本信息、病人心脏病类型、病人心音和各类心脏病的模型,其中各类心脏病的模型前期的建立和后期的更新由机器学习算法实现。
进一步的,所述基于机器学习算法的模型的建立和更新过程如下:
1)将连续的心音信号f1(t)利用分割算法将原信号按照心跳周期进行分割。从而得到一系列只含有一个心跳周期的心音信号;
2)利用深度学习的自编码器进行降维和特征提取,并同时提取心音信号时域和频域的特征参数;
3)将上述有特征参数的训练样本利用分类算法,确定模型中不同类型的心脏病所对应的参数,结合交叉验证的方法对所得到的模型进行融合并存储于云端的数据库模块。
进一步的,所述不锈钢腔体用于隔离噪音,其主体为圆锥形腔体,圆锥形腔体的倾角为46°。
进一步的,用于测量环境噪音的噪音采集单元和用于测量心跳声音的心音采集单元相互配合。通过反相的方法减少环境噪音对测量的心音的影响。
与现有技术相比,本发明的有益效果如下:
1.本发明包含了心音传感器和噪音传感器,可以同时测量心音和环境噪音,还包含了特定形状的不锈钢锥形腔体和塑料外壳的配合,实现了从硬件角度隔离噪音的效果,也为数据处理时的减相设计提供了准备,有效提高本设计的抗干扰能力,使得本发明能适用于各类场合,对环境要求低,有效地克服现有技术这个方面的不足。
2.本发明中的算法采用了机器学习算法,能够有效地提取并建立各类心脏病的特征和模型。同时,机器学习算法在前期训练模型的时候采集了大量的心脏病数据,能够覆盖大量的心脏病样本,所得到的模型可靠度远高于现有的。
3.本发明包括数据库系统,能够操作度要求低,对使用者医学水平无要求。同时,该数据库系统还能为未来心脏病的预测和管理提供帮助。
附图说明
图1为本发明所述的基于心音检测和机器学习算法的心脏病筛查系统的示意图。
图2为本发明所述的预处理电路的模块示意图。
图3为本发明所述的机器学习算法的示意图。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710706473.7/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种带拖移装置的CT检查床
- 下一篇:超声套自动传送套装系统