[发明专利]一种古建筑沉降的组合预测方法及系统有效

专利信息
申请号: 201710654232.2 申请日: 2017-08-03
公开(公告)号: CN107368928B 公开(公告)日: 2021-05-04
发明(设计)人: 张小红 申请(专利权)人: 西安科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/26;G06N3/00;G06N3/04
代理公司: 西安铭泽知识产权代理事务所(普通合伙) 61223 代理人: 李振瑞
地址: 710054 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 古建筑 沉降 组合 预测 方法 系统
【说明书】:

发明提供了一种古建筑沉降的组合预测方法及系统,涉及古建筑沉降预测技术领域。利用Verhulst灰色模型通过采用等维递补滚动方法进行多次预测,可以利用较少的样本进行趋势预测,对沉降数据的趋势进行总体把握。然后,然后将初步预测结果输入RBF神经网络,充分发挥RBF局部寻优的优势。该模型既可以有效避免BP等神经网络的全局优化过拟合现象,提高预测的精度的同时,又可以规避Verhuslt灰色模型多步预测的低精度问题,真正实现古建筑沉降数据的高精度多步预测。

技术领域

本发明涉及古建筑沉降预测技术领域,特别涉及一种古建筑沉降的组合预测方法及系统。

背景技术

当今,文物保护模式逐渐从“抢救性”保护过渡到“预防性”保护,利用物联网技术实现文物多角度全方位监测,为文物病害发展趋势预测提供了丰富的数据支持,为文物保护和修复方案的制定提供了重要依据,避免因决策不当造成文化遗产价值遗失。文化遗产包含古墓葬、古建筑等不可移动文物。古建筑沉降是由于建筑物荷载通过基础底面传递给地基,使天然土层原有的应力状态发生变化,当地基荷载不均匀时,就会造成不均匀沉降,从而给古建筑完整性和安全性带来隐患。如果沉降变形估计不足,轻则出现裂缝影响古建筑观瞻性和稳定性,重则会引发结构坍塌和严重人员伤亡事故。因此,提高古建筑沉降的预测精度至关重要。

造成古建筑沉降的因素包括地下水开采、人为破坏、自身结构等多种随机性、不确定性因素,因此,沉降数据具有非线性、复杂性及多模态性等特点,致使沉降预测存在诸多困难。目前计算与预测沉降形变的理论方法可以分为两类:一类是模型法,即基于土体本构关系的数值方法,从地面沉降的整个发展过程来分析考虑,建立沉降量与时间的关系模型;另一类是基于实测数据的智能分析方法。

模型法主要采用渗透固结理论、静态预测法和灰色系统法等。其中,渗透固结理论由于参数获得、理论假设等方面的问题,其预测误差往往较大;静态预测法是建立建筑物沉降与时间的拟合关系,常用的拟合函数有双曲线、指数函数等,由于拟合函数事先给定,使得该方法适用范围受到较大限制,且难以反映全过程的沉降与时间的关系;灰色预测模型适用于对非线性、不确定系统的时间序列数据进行预测,尤其对“贫信息”的小样本量作总体趋势预测。张庆伟、刘毅、王亚光等采用灰色模型对地面沉降数据进行了预测,从预测结果来看,灰色模型初期预测较好,但后期收敛较慢,因沉降的多变性和复杂性以及试验参数获取的困难性,不能达到预测精度的要求。尤其是当系统中出现了突变、故障等情况时,由于数据的突变,破坏了数据本身的平稳性,造成预测误差大幅上升。

在智能分析方法中,很多学者利用BP人工神经网络、小波分析等方法对沉降预测进行了研究。BP神经网络模型具有自学习、容错性强、计算简单、并行处理速度快等优点,在理论上可以任意逼近任何非线性映射。Yong、Carles等采用人工神经网络(ArtificialNeural Network,ANN)、高斯过程(Gaussian processes,GP)法进行沉降预测。OCAK等通过BP神经网络对隧道围岩变形了预测。由于BP神经网络是一种前馈神经网络,而沉降会有一定的滞后性,与前几年的沉降量存在一定关联性,使得BP神经网络在中短期预测方面存在很大局限性。郭健运用小波分析对沉降监测数据去噪处理后,构建了W-RBF预测模型,验证了运用RBF神经网络进行沉降预测的可行性。从现有模型对路基沉降的预测情况看,多数模型只适合中短期预测,而中长期的预测能力(预测长度和预测精度)较弱,同时在很多情况下缺少对模型可靠性的验证。

发明内容

本发明实施例提供了一种古建筑沉降的组合预测方法及系统,用以解决现有技术中存在的问题。

一种古建筑沉降的组合预测方法,所述方法包括:

对应变片采集的原始沉降序列进行五点三次平滑滤波,将所述原始沉降序列中的噪声滤除,得到相应的初始沉降序列;

对所述初始沉降序列采用Verhulst灰色模型进行预测,得到相应的初步预测沉降序列;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安科技大学,未经西安科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710654232.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top