[发明专利]一种线性正则变换的快速实现方法在审
| 申请号: | 201710593185.5 | 申请日: | 2017-07-20 |
| 公开(公告)号: | CN107402904A | 公开(公告)日: | 2017-11-28 |
| 发明(设计)人: | 芮义斌;严丽萍;谢仁宏;李鹏;郭山红;吕云涛;杜禹 | 申请(专利权)人: | 南京理工大学 |
| 主分类号: | G06F17/14 | 分类号: | G06F17/14 |
| 代理公司: | 南京理工大学专利中心32203 | 代理人: | 马鲁晋 |
| 地址: | 210094 *** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 线性 正则 变换 快速 实现 方法 | ||
技术领域
本发明属于信号处理技术领域,特别是一种线性正则变换的快速实现方法。
背景技术
线性正则变换是分数阶Fourier变换的进一步扩充与发展,它是一种更加广泛的非平稳信号分析与处理的数学变换方法,也是近年来在非平稳信号分析与处理领域发展迅速的中点研究热点之一。线性正则变换可以看成是对信号在时频平面上做仿射变换,因此在信号的滤波、分析与处理等方面都比经典的Fourier变换及分数阶Fourier变换具有更多的灵活性和优势。
在实际应用中,优良的变换方法除了具有很好的性质与特点之外,也必须具有良好的离散化方法以及快速算法。线性正则变换具有4个自由参数和1个限制条件,在灵活性增加的同时也给变换的实现带来了更大的困难。从目前的研究情况来看,线性正则变换离散化方法和快速算法是现代信号处理领域的热点之一。
Pei等人于2000年提出的通过两次Chirp乘积和一次FFT的运算,虽降低了计算复杂度,但不满足线性正则变换的旋转相加性。Healy等人于2009年提出的尺度保持型离散线性正则变换虽实现了快速实现,但信号输出范围受限。Koc等人于2008年提出了两种线性正则变换的计算方法,第一种是把线性正则变换分解为Chirp乘积、Fourier变换及尺度变换的组合形式;第二种方法是把线性正则变换分解为分数阶Fourier变换、尺度变换与Chirp乘积的组合形式,虽降低了计算复杂度,但尺度变换会影响采样周期且在实际应用中尺度变换的实现较困难。
发明内容
本发明所解决的技术问题在于提供一种线性正则变换的快速实现方法。
实现本发明目的的技术解决方案为:一种线性正则变换在时频分析中的快速实现方法,包括以下步骤:
步骤1、对信号x(t)进行采样,得到信号的离散序列x[nT](n=0,1,…,N-1),其中N为总的采样点数,T为采样周期;
步骤2、对离散序列进行系数为的Chirp乘积运算,得到xcm[n],其中a、b、c、d为线性正则变换参数矩阵M=[a b;c d]的参数;
步骤3、对步骤2所得的xcm[n]进行N点快速傅里叶变换,得到:
Xcc1[k](k=0,1,…,N-1);
步骤4、对步骤3所得的Xcc1[k]进行系数为-b的Chirp乘积运算,得到Xcc2[k];
步骤5、对步骤4所得的Xcc2[k]进行快速傅里叶逆变换,得到xcc[m](m=0,1,…,N-1);
步骤6、对步骤5所得的xcc[m]进行系数为的Chirp乘积运算,完成线性正则变换,得到xLCT[m];
步骤7、在线性正则域对信号xLCT[m]进行时频分析,完成线性正则变换的快速实现。
本发明与现有技术相比,其显著优点:1)本发明利用快速傅里叶变换,有效地将计算复杂度降为O(Nlog2N);2)本发明利用线性正则变换的叠加性进行分解实现,在实现过程中保留了原线性正则变换的相关性质;3)本发明的实现过程中不需要进行尺度变换,采样周期保持不变,易于实现。
下面结合附图对本发明作进一步详细描述。
附图说明
图1是本发明一种线性正则变换的快速实现方法流程图。
图2是本发明实施例1信号时域波形图。
图3是本发明实施例1信号线性正则域波形图。
图4是本发明实施例2信号经维格纳分析后的时频图。
图5是本发明实施例2信号经线性正则快速实现结合魏格纳分析后的时频图。
具体实施方式
结合图1,本发明的一种线性正则变换的快速实现方法,包括以下步骤:
步骤1、对信号x(t)进行采样,得到信号的离散序列x[nT](n=0,1,…,N-1),其中N为总的采样点数,T为采样周期;
步骤2、对离散序列进行系数为的Chirp乘积运算,得到:
其中,a、b、c、d为线性正则变换参数矩阵M=[a b;c d]的参数;
步骤3、对步骤2所得的xcm[n]进行N点快速傅里叶变换,得到:
Xcc1[k](k=0,1,…,N-1);
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710593185.5/2.html,转载请声明来源钻瓜专利网。





