[发明专利]一种基于特征返回的条件DCGAN模型的动态调整方法有效
申请号: | 201710579119.2 | 申请日: | 2017-07-17 |
公开(公告)号: | CN107563509B | 公开(公告)日: | 2020-11-24 |
发明(设计)人: | 周智恒;李立军 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 罗观祥;李本祥 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 特征 返回 条件 dcgan 模型 动态 调整 方法 | ||
本发明公开了一种基于特征返回的条件DCGAN模型的动态调整方法,属于深度学习神经网络领域,该算法步骤如下:构造深度卷积生成式对抗网络DCGAN模型;对DCGAN模型进行训练;在判别器的卷积层中,对每一层卷积之后的图像特征数据记为特征数据记录Xi;将所有Xi进行维度扩展;S5、将维度扩展后的特征数据记录Xi与输入生成器中的噪声结合输入到记录图像生成器中进行训练。本方法能够解决在网络训练初期,生成器生成图像不符合数据集特征的问题,使生成器通过学习判别器中卷积过程的图像特征,以更高的效率学习到数据集中的图像特征,从而能够以更快的速度生成符合数据集特征的图像,能够较大程度地减小网络训练所需要的时间。
技术领域
本发明涉及深度学习神经网络技术领域,具体涉及一种基于特征返回的条件DCGAN模型的动态调整方法。
背景技术
生成式对抗网络(Generative Adversarial Network,简称GAN)是由Goodfellow在2014年提出的框架,它基于“博奕论”的思想,构造生成器(generator)和判别器(discriminator)两种模型,前者通过输入(0,1)的均匀噪声或高斯随机噪声生成图像,后者对输入的图像进行判别,确定是来自数据集的图像还是由生成器产生的图像。判别器每完成一次判断,将结果误差返回给生成器。利用判别器的返回误差,生成器对自身模型进行进一步的改善,生成质量更高的图像,当生成器无法辨别图像来自于数据集还是生成器时,就认为生成器已经达到“以假乱真”的能力。
然而,在网络训练的过程中,生成器的学习速度往往是非常缓慢的。在网络训练的初期,由于输入噪声的随机性,生成器生成的图像大多数是不符合数据集特征的、毫无规则的图像。唯一的解决办法是,随着网络训练迭代次数的增加,判别器对图像进行判别之后返回的误差,才能够帮助生成器生成符合数据集特征的图像。基于DCGAN模型的网络训练,数据集的规模往往是巨大的,若只能随着网络训练的深入才能提高生成器生成图像的性能,则网络训练前期需要耗费大量的时间让生成器学习数据集中的特征,这大大影响了网络训练的效率。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,构建了一种基于特征返回的条件DCGAN模型的动态调整方法。
本发明的目的可以通过采取如下技术方案达到:
一种基于特征返回的条件DCGAN模型的动态调整方法,所述动态调整方法包括下列步骤:
S1、构造深度卷积生成式对抗网络DCGAN模型,该DCGAN模型包含记录图像生成器和记录图像判别器,采用交叉熵函数作为双方的损失函数;
S2、输入图像数据集,对所述DCGAN模型进行训练;
S3、在记录图像判别器的卷积层中,对每一层卷积之后的图像特征结果记录下来,第i层卷积之后的特征数据记录为Xi,i=1,2,…,N,N为记录图像判别器中卷积层的层数;
S4、将所述特征数据记录Xi进行维度扩展,使其维度等于输入记录图像生成器中的噪声维度;
S5、将维度扩展之后的特征数据记录Xi与输入记录图像生成器中的噪声结合,然后共同输入到记录图像生成器中进行训练。
进一步地,所述步骤S2具体如下:
随机初始化所述记录图像生成器和所述记录图像判别器的卷积神经网络中所有的参数和权重,输入图像数据集,然后利用随机梯度下降的方法对参数不断进行训练、调整与更新。
进一步地,所述步骤S3具体如下;
S31、根据所述记录图像判别器中卷积层的层数N,初始化N个维度可扩展的数组datai,i=1,2,…,N;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710579119.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种大数据故障预测方法
- 下一篇:一种基于深度卷积神经网络的WGAN模型方法