[发明专利]一种复频电流体动力学打印装置及其打印方法有效

专利信息
申请号: 201710559208.0 申请日: 2017-07-11
公开(公告)号: CN107214946B 公开(公告)日: 2019-04-05
发明(设计)人: 于影;左雨欣;左春柽;曹倩倩 申请(专利权)人: 嘉兴学院
主分类号: B29C64/112 分类号: B29C64/112;B33Y10/00
代理公司: 北京翔瓯知识产权代理有限公司 11480 代理人: 康云晓
地址: 314001 *** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 复频电 流体动力学 打印 装置 及其 方法
【说明书】:

一种复频电流体动力学打印装置及其打印方法。主要解决现有聚合物金属纳米颗粒复合材料在现有加工方法中存在操作复杂且参数难于控制、在电流体动力学加工方法中电压施加难以控制等问题。其特征在于:所述直流电场、高频交流电场、中频交流电场共同形成复频电压;所述复频电压为v,v=v0+v1(sinω1t)+v2(sinω2t+φ)。其优点在于复频电压可使绝缘性能下降的聚合物纳米颗粒复合材料在电流体动力学打印过程中不会因超高电压的施加而产生电击穿,又可保证超高电压条件下打印液滴表面电荷密度增加不致产生电晕放电现象。

技术领域

发明涉及一种3D打印技术领域,具体涉及一种复频电流体动力学打印装置及其打印方法。

背景技术

聚合物金属纳米颗粒复合材料的3D打印是目前增材制造研究中新的研究方向和重点发展领域之一。聚合物金属纳米颗粒复合材料由于添加了金属而改变了聚合物的物理化学性质并产生不同于聚合物基体和金属纳米颗粒本身的新特征,通过3D打印可产生特殊微纳结构且具有多种新功能(磁性、介电、压电、光电等超功能),其应用领域十分广泛,从超材料、量子隧道效应、柔性传感器到各种纳米功能器件等领域都有应用前景。

聚合物金属纳米复合材料制备的主要方法有溶液涂膜、高能球磨法、离子溅射法或溶剂浇铸成型等。此外,兰缪尔-布洛吉特沉积法、电沉积以及逐层沉积法等也被用于聚合物纳米颗粒复合薄膜的制备。但是,上述技术几乎都采用水作为溶剂,并且兰缪尔-布洛吉特分子必须具有两亲性,即需要具有亲水基团和疏水基团使分子在空间上呈现彼此分离的两个部分,这一要求大大限制了该技术的适用范围。电沉积是一种用于聚合物与金属纳米颗粒复合材料的功能表面制备的有效方法,通常需要三电极液态环境且在稳定的电流或稳定的电压下进行,但操作复杂且参数难于控制。逐层沉积技术基于带相反电荷的粒子之间的静电吸引作用,逐层沉积技术提供了一种简单通用且有效的方法用于制成多种纳米结构。

在逐层加工的方法中,电流体动力学打印是一种快速有效且精度可控的方法。电流体动力学打印是一种新型的3D打印方法,属于纳米材料溶液打印,被认为是3D打印中可以实现纳米尺度打印的一种,被用于聚合物金属银纳米粒子复合材料的打印制造太赫兹超材料展示了诱人的前景。电流体动力学打印不需要特定的液态环境,对环境温度要求较低且能够按需逐层打印,能有效控制沉积层的厚度及结构,相比于上述的其它聚合物纳米粒子复合材料制造方法有明显的优势。但这种溶液打印,金属纳米颗粒的浓度不能太高,达到实用的纳米颗粒浓度要求进一步增加工作电压。因为金属纳米颗粒的增加会使溶液粘度和表面张力增加,则必须增加外电场强度,但此举可导致打印液滴表面电荷密度增加,而产生电晕放电;同时,与只有聚合物溶液相比,增加金属纳米粒子后,复合材料的介电特性改变,绝缘性能下降导致高电压容易产生电击穿。这样,存在一方面要求电压增加而另一方面要求电压减小的矛盾。因此,迫切需要一种新的电压控制方法解决电流体动力学打印过程中出现的这一矛盾。

基于这一问题,本发明提出一种复频电流体动力学打印方法,解决电流体动力学打印聚合物金属纳米颗粒复合材料的电压控制技术壁垒。本发明在3D打印和微纳制造等领域具有普遍应用前景,将为柔性传感器、超材料的3D打印制备等提供一种新的方法。

发明内容

为了克服背景技术的不足,本发明提供一种复频电流体动力学打印装置及其打印方法,解决现有聚合物金属纳米颗粒复合材料在现有加工方法中存在操作复杂且参数难于控制、在电流体动力学加工方法中电压施加难以控制等问题。

本发明所采用的技术方案:一种复频电流体动力学打印装置,包括直流电源、高频变压器、中频变压器、喷头、导电阳极、环形辅助电极、平板电极;所述喷头接触连接导电阳极,所述环形辅助电极设置在喷头下方,所述平板电极设置在环形辅助电极下方,所述环形辅助电极、平板电极共同接地;所述直流电源连接导电阳极、平板电极形成直流电场,所述高频变压器连接导电阳极、环形辅助电极形成高频交流电场,所述中频变压器连接导电阳极、平板电极形成中频交流电场。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于嘉兴学院,未经嘉兴学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710559208.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top