[发明专利]一种基于协方差矩阵重构和导向矢量估计的稳健波束形成方法有效

专利信息
申请号: 201710532149.8 申请日: 2017-07-03
公开(公告)号: CN107167778B 公开(公告)日: 2020-11-17
发明(设计)人: 郑植;郑彦;孙洁;吴玉婕 申请(专利权)人: 电子科技大学
主分类号: G01S7/36 分类号: G01S7/36
代理公司: 电子科技大学专利中心 51203 代理人: 周刘英
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 协方差 矩阵 导向 矢量 估计 稳健 波束 形成 方法
【说明书】:

发明公开了一种基于协方差矩阵重构和导向矢量估计的稳健波束形成方法。首先对天线接收数据的协方差矩阵进行特征值分解得到噪声子空间,使用多重信号分类算法估计出干扰信号的到达角及计算导向矢量,再对其使用鲁棒Capon波束形成算法进行校正,根据导向矢量的正交性求解出干扰信号的功率,构造出干扰加噪声协方差矩阵;通过找到与期望信号导向矢量正交的子空间来构造求解期望信号导向矢量的约束条件,根据最大输出功率解出精确的期望信号导向矢量。本发明对于阵列位置误差、非互关联本地散射以及总的幅相误差所引起的导向矢量误差和干扰加噪声协方差矩阵误差具有很好的稳健性,与现有方式相比,具有更高的输出信干噪比,有着更好的输出性能。

技术领域

本发明属于阵列信号处理领域,主要涉及一种幅相误差场景下干扰加噪声协方差矩阵重构和导向矢量估计的稳健波束形成方法。

背景技术

自适应波束形成技术可以使得阵列输出中目标信号方向尽可能被有效接收和增强,而其他方向上的干扰和噪声被有效抑制,从而提高阵列的信干噪比。近年来已被广泛应用于雷达、射电天文学、声纳、医学成像、麦克风语音阵列处理、地震勘测、认知无线电及无线通信等多个领域。当实际工作环境与理想假设模型存在一定偏差时,比如阵列校准误差、非互关联本地散射,以及总体的幅相误差等,自适应波束形成器将会把期望信号误认为干扰而加以抑制,产生信号“相消”现象,从而导致波束形成器的性能急剧下降。

针对各种误差所引起的波束形成器性能下降的问题,近年来出现了很多稳健波束形成算法。如文献《Du L,Li J,Stoica P.Fully Automatic Computation of DiagonalLoading Levels for Robust Adaptive Beamforming[C]//IEEE InternationalConference on Acoustics,Speech and Signal Processing.IEEE Xplore,2010:2325-2328.》提出了一种对角加载的方法,其通过放缩估计的方式来自动计算对角加载因子,虽然该方法很大程度上提高了波束形成的性能,且在低采样次数下也可以获得良好的性能,但是该算法所计算出来的对角加载因子并不是最优的,无法获得较好的性能。而文献《NaiS E,Ser W,Yu Z L,et al.Iterative Robust Minimum Variance Beamforming[J].IEEETransactions on Signal Processing,2011,59(4):1601-1611.》提出了一种迭代稳健最小方差波束形成算法,其给假设的导向矢量设置了一个比较小的不确定椭圆集,每次在这个小范围内寻找最优的导向矢量,将找到的作为假设的导向矢量;然后通过在确定的范围内多次迭代去寻找到的真实的期望信号导向矢量,该算法本质上属于对角加载算法,可以通过多次迭代来算出最优加载因子;但是该算法复杂度比较高,计算工作量较大。文献《JiaW,Jin W,Zhou S,et al.Robust adaptive beamforming based on a new steeringvector estimation algorithm[J].Signal Processing,2013,93(9):2539-2542.》公开了一种基于特征子空间估计的算法,其利用期望信号导向矢量投影在信号子空间的部分大于其他导向矢量投影的部分这一关系来构造凸优化不等式解出真实的期望信号导向矢量,该算法可以有效的对抗各种各样的误差因素,可以得到较为准确的期望信号的导向矢量。

然而,以上的这些算法只是对导向矢量进行了校正,所使用的协方差矩阵都是接收数据的协方差矩阵,与理论上所需要的干扰加噪声协方差矩阵相差甚远;在高信噪比条件下会有明显的性能衰减。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710532149.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top