[发明专利]一种图像质量判断的方法及机器人人脸识别系统有效

专利信息
申请号: 201710518661.7 申请日: 2017-06-29
公开(公告)号: CN109215010B 公开(公告)日: 2021-08-31
发明(设计)人: 曲道奎;徐方;邹风山;潘鑫;李邦宇;姜楠 申请(专利权)人: 沈阳新松机器人自动化股份有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06T7/13;G06T5/00;G06K9/62;G06K9/00
代理公司: 沈阳科苑专利商标代理有限公司 21002 代理人: 许宗富
地址: 110168 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图像 质量 判断 方法 机器 人人 识别 系统
【说明书】:

发明公开一种图像质量判断的方法及包含该图像质量判断方法的机器人人脸识别系统。图像质量判断方法包括对目标物的图像进行灰度分布统计,判断所述图像的亮度是否符合亮度阈值条件;若所述图像符合亮度阈值条件,对所述图像进行人脸区域判断;若所述图像包含人脸区域,则对所述图像进行再模糊处理,获得再模糊图像;对所述图像和所述再模糊图像各自进行分块及边缘提取,计算两者的结构相似度,若结构相似度大于预设阈值,则判断所述图像符合质量要求。本发明实施例采用亮度判断和模糊特征判断两者结合,有效地判断出由环境亮度及机器人或目标物运动而造成图像质量下降的情况,剔除不符合人脸识别要求的图像,有效地提高人脸识别的准确率。

技术领域

本发明涉及图像处理领域,尤其涉及如何进行图像质量判断的方法及采用该图像质量判断方法的机器人人脸识别系统。

背景技术

随着科学技术的进步,机器人越来越多的出现在我们的日常生活中,如在餐厅吃饭、商场购物、银行大厅办理业务等场所均能看见机器人为我们服务的身影。为了增加机器人同人的互动性,人脸识别是一种必不可少的功能。

作为一种新兴的生物识别技术,人脸识别主要利用人面部的特征信息来进行身份识别。不同于其他生物识别技术,人脸识别由于具有直接、友好、方便等特点,使用者无任何心理障碍,更易为使用者所接受,从而得到了广泛的研究与应用。通过对人脸识别的结果作进一步的分析,研究者可得到有关人的性别、表情、年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。

机器人进行人脸识别通常是通过采集人脸的图像进行识别,然而,由于机器人在实际使用过程中会受到各种环境情况的干扰,其所采集的图像会因为各种环境情况的干扰而质量不佳。例如,当机器人或人存在运动情况时,采集到的图像会有模糊现象,而模糊的图像会影响人脸面目特征的提取,从而导致识别错误。同时,当机器人处在光线较强或较差的环境下时,面目特征的提取也会受到影响,从而导致识别错误的发生。

因此,需要一种具有图像质量判断的机器人人脸识别系统,来进行图像质量的甄别,从而避免上述由于图像质量不佳而发生的识别错误现象,提高机器人使用过程中人脸识别的准确率。

发明内容

针对现有机器人人脸识别系统所存在的问题,本发明提出一种图像质量判断方法,通过结合亮度判断和模糊判断,有效地判断出由环境亮度及机器人或目标物运动而造成图像质量下降的情况,剔除不符合人脸识别要求的图像,有效地提高人脸识别的准确率。该方法的方案如下:

一种图像质量判断的方法,包括步骤:对所采集目标物的图像进行灰度分布统计,判断所述图像的亮度是否符合亮度阈值条件;若所述图像符合亮度阈值条件,对所述图像进行人脸区域判断;若所述图像包含人脸区域,则对所述图像进行再模糊处理,获得再模糊图像;对所述图像和所述再模糊图像各自进行分块及边缘提取,计算两者的结构相似度,若结构相似度大于预设阈值,则判断所述图像符合质量要求。

优选的,所述灰度分布统计包括步骤:将所述图像进行灰度转化,获得灰度图像;对所述灰度图像构建灰度直方图,并且根据灰度范围对所述灰度直方图划分区间;统计所述区间的占比,计算灰度分布比例因子。

优选的,将所述灰度范围划分为50等分,前10等分区间定义为暗区间,中间30等分区间定义为正常区间,后10等分区间定义为亮区间。

优选的,对所述区间进行权重值分配,所述暗区间的权重值为0.2,所述正常区间的权重值为0.6,所述亮区间的权重值为0.2。

优选的,对所述人脸区域图像采用高斯平滑滤波进行模糊处理。

优选的,所述分块的窗口为8×8的窗口,所述块间的移动步长为4。

优选的,所述边缘提取方法采用canny边缘检测算法,提取预定数目个边缘信息最丰富的子块。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于沈阳新松机器人自动化股份有限公司,未经沈阳新松机器人自动化股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710518661.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top