[发明专利]基于图像熵特征的调频连续波雷达飞机目标分类方法有效
申请号: | 201710483843.5 | 申请日: | 2017-06-23 |
公开(公告)号: | CN107192993B | 公开(公告)日: | 2020-02-07 |
发明(设计)人: | 纠博;张华斌;刘宏伟;王鹏辉;陈渤 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G01S7/41 | 分类号: | G01S7/41 |
代理公司: | 61205 陕西电子工业专利中心 | 代理人: | 王品华;朱红星 |
地址: | 710071 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 图像熵 回波 差频信号 飞机目标 识别性能 分类器 调频连续波雷达 快速傅里叶变换 测试样本图像 调频连续波 分类结果 目标分类 目标识别 特征训练 训练样本 熵特征 调频 机身 可用 时域 微动 样本 观测 雷达 | ||
本发明公开了一种基于图像熵特征的调频连续波雷达飞机目标分类方法,主要解决现有方法中只提取机身目标所在距离单元的回波进行处理,会损失大量微动信息,降低识别性能的问题。其实现过程是:通过雷达进行多个调频周期的观测,接收得到飞机目标的回波差频信号;将每个周期的时域回波差频信号进行多倍于原信号长度的快速傅里叶变换处理;提取样本的四个图像熵特征;利用训练样本的图像熵特征训练分类器;将测试样本图像熵特征输入到分类器中,得到三类飞机目标的分类结果。本发明具有识别性能高的优点,可用于调频连续波雷达体制下的目标识别。
技术领域
本发明属于雷达技术领域,特别涉及一种空中运动目标的分类方法,可用于调频连续波雷达体制下,将分散在多个距离单元的回波信息综合处理后进行分类识别。
背景技术
近年来,微动特性在雷达目标识别中受到广泛关注。微动是指雷达目标除质心平动以外的振动或转动。2000年美国海军研究实验室的Victor C.Chen最早发表了微波雷达中微多普勒效应分析实验结果。实验表明不同的微运动会产生不同的微多普勒调制,微多普勒效应可以反映目标结构部件的几何构成和运动特性,此外由微动所产生的时域特性同样能够作为目标独一无二的特征。因此,通过目标微动差异可以提取具有良好分类性能的特征,从而实现对目标的分类和识别。
对于空中目标分为喷气式飞机,螺旋桨飞机和直升机三类,其转动的旋翼产生微多普勒效应和时域特性,现今,国内外主要在脉冲多普勒PD体制下,基于窄带雷达回波的喷气发动机调制JEM特征对空中三类飞机目标的分类方法进行研究。
陈凤,刘宏伟等2010年发表的文章《基于特征谱散布特征的低分辨雷达目标识别方法》,就是根据螺旋桨飞机、喷气式飞机和直升机三类飞机JEM调制谱对应谱线条数的差别来提取分类特征,从而区分螺旋桨飞机、喷气式飞机和直升机。
赵越,纠博等2017年发表的文章《一种基于时频分析的窄带雷达飞机目标分类特征提取方法》,是根据喷气式飞机、螺旋桨飞机和直升机三类目标调制周期的差异,提取时频谱域的熵值变化特性,并给出了时频分析中窗函数长度的优化选择方法,在低信噪比条件下提高了识别率。
上述方法均在脉冲多普勒雷达体制下进行研究,该体制下目标微动信息可以近似看作处于一个距离单元上,因此只利用机身所在单个距离单元的回波来提取特征就可以得到有效的分类效果。
在调频连续波雷达体制下,由于高速运动的旋翼部件存在,飞机目标回波会发生明显的谱峰分裂现象,微动分量分布在不同的距离单元上,无法满足上述目标处于单一距离单元的近似条件,现有方法中只提取机身目标所在距离单元的回波进行处理,会损失大量微动信息,降低识别性能。
发明内容
为了克服现有方法的缺点,本发明提出了一种基于图像熵特征的调频连续波雷达飞机目标分类方法,以在调频连续波雷达体制下实现对飞机目标的有效分类,并提高分类性能。
为实现上述目的,本发明的技术方案包括如下:
1)雷达进行m个调频周期的观测,接收飞机目标的回波差频信号,得到时域回波矩阵s=[s1,s2,…,si,…,sm]T,其中si是第i个调频周期的列向量回波,i=1,2,…,m;
2)将每个周期的时域回波差频信号si进行D倍于原信号长度的快速傅里叶变换,得到新的时域回波矩阵:s′=[s1′,s2′,…,si′,…,sm′]T,其中表示新的时域回波矩阵s′的第i个行向量,表示D倍于原信号长度的快速傅里叶变换,|·|表示取模运算;
3)根据2)中得到的新的时域回波矩阵s′中处于L个距离单元上飞机目标信息,得到图像熵特征:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710483843.5/2.html,转载请声明来源钻瓜专利网。