[发明专利]基于结构学习和素描特性推理网络的SAR图像分割方法有效
申请号: | 201710453446.3 | 申请日: | 2017-06-15 |
公开(公告)号: | CN107341813B | 公开(公告)日: | 2019-10-25 |
发明(设计)人: | 刘芳;陈璞花;孟义鹏;焦李成;李婷婷;古晶;马文萍;郝红侠 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T7/187 | 分类号: | G06T7/187 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 结构 学习 素描 特性 推理 网络 sar 图像 分割 方法 | ||
本发明公开了一种基于结构学习和素描特性推理网络的SAR图像分割方法,主要解决现有技术分割SAR图像不准确的问题。其实现步骤是:1.根据SAR图像的素描模型,提取素描图;2.根据SAR图像的素描图,得到区域图,并将区域图映射到SAR图像中,得到SAR图像的混合像素子空间、结构像素子空间和匀质像素子空间;3.对混合像素子空间进行特征学习;4.构造素描特性推理网络并对混合像素子空间进行分割;5.对结构像素子空间和匀质像素子空间依次进行相应的分割;6.合并各个像素空间的分割结果,得到最终分割结果。本发明提高了SAR图像分割的准确性,可用于合成孔径雷达SAR图像的目标检测与识别。
技术领域
本发明属于图像处理技术领域,更进一步涉及合成孔径雷达SAR图像分割方法,可用于后续的合成孔径雷达SAR图像的目标检测与识别。
背景技术
合成孔径雷达SAR图像分割是指根据灰度、纹理、结构、聚集性等特征将合成孔径雷达SAR图像划分成若干个互不相交的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性的过程。合成孔径雷达SAR图像分割的目的是简化或改变图像的表示形式,使得图像更容易理解和分析。合成孔径雷达SAR图像分割是图像理解与解译的基础,分割质量的好坏直接影响后续的分析、识别等。通常,分割越准确,识别越成功。
现有的合成孔径雷达SAR图像分割方法主要分为基于特征的方法和基于统计模型的方法。基于特征的方法主要是提取一些合成孔径雷达SAR图像的特征进行分割,比如纹理特征、边特征以及混合特征等。基于统计模型的方法将合成孔径雷达SAR图像分割问题用概率的方式表达,将图像的特征描述为一些经验的分布,例如Nakagami分布、Gamma分布、K分布、G分布等。
刘芳,段一平等在其发表的论文“基于层次视觉语义和自适应邻域多项式隐模型的SAR图像分割”(IEEE Trancactions on Geoscience and Remote Sensing,2016,54(7):4287-4301.)中提出了一种基于层次视觉语义和自适应邻域多项式隐模型的SAR图像分割方法,该方法根据合成孔径雷达SAR图像的素描模型提取出SAR图像的素描图,采用素描线区域化方法,得到SAR图像的区域图,并将区域图映射到SAR图像中,最终将合成孔径SAR图像划分为聚集区域、匀质区域和结构区域。基于该划分,对不同特性的区域采用了不同的分割方法。对于聚集区域,提取了灰度共生矩阵特征,并采用局部线性约束编码的方法得到每个聚集区域的表示,进而采用层次聚类的方法进行分割。对结构区域,通过分析边模型和线模型,设计了视觉语义规则定位边界和线目标。另外,边界和线目标包含了强烈的方向信息,因此设计了基于几何结构窗的多项式隐模型进行分割。对匀质区域,为了能找到恰当的邻域去表示中心像素,设计了基于自适应窗口的多项式隐模型进行分割。这三个区域的分割结果被整合到一起得到最后的分割结果。该方法的不足之处是,对于聚集区域边界定位不够精确;对于匀质区域的分割结果区域一致性较差,且类别数不够合理;而结构区域的分割结果中未对独立目标进行处理。
林达,徐新,潘雪峰,张海涛在其发表的论文“一种新的MSTAR SAR图像分割方法”(武汉大学学报,2014,3,9)中提出了一种新的MSTAR SAR图像分割方法。该方法首先根据地物的散射机制进行属性散射中心特征提取,构造属性散射中心特征向量,然后使用马尔科夫随机场结合属性散射中心特征对MSTAR SAR图像进行空间邻域关系描述,最后运用标号代价能量优化算法得到最终的分割结果。该方法存在的不足之处是对合成孔径雷达SAR图像进行分割所使用的特征是人工提取的,人工选取特征是一件非常费力、需要专业知识的方法,能不能选取到好的特征很大程度上靠经验和运气,因此人工选取的特征的好坏往往成为整个系统性能的瓶颈。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710453446.3/2.html,转载请声明来源钻瓜专利网。