[发明专利]基于四维块匹配滤波的高光谱遥感图像去噪方法有效

专利信息
申请号: 201710240656.4 申请日: 2017-04-13
公开(公告)号: CN107146206B 公开(公告)日: 2019-07-23
发明(设计)人: 张静;牛高阳;李云松 申请(专利权)人: 西安电子科技大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 陕西电子工业专利中心 61205 代理人: 田文英;王品华
地址: 710071 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 四维块 匹配 滤波 光谱 遥感 图像 方法
【说明书】:

本发明公开了一种基于四维块匹配滤波的高光谱遥感图像去噪方法,主要解决了现有技术中高光谱遥感图像的去噪结果中细节信息模糊泛化和边缘轮廓信息丢失的问题。其实现步骤如下:(1)输入高光谱遥感图像;(2)对高光谱遥感图像中的波段进行分组;(3)构造四维数据块;(4)对四维数据块进行经验维纳滤波;(5)输出去噪后高光谱遥感图像数据。本发明能够较好地保持去噪后的结果中的细节信息及边缘信息,可用于高光谱遥感图像的去噪。

技术领域

本发明属于图像处理技术领域,更进一步涉及高光谱图像滤波处理技术领域中的一种基于四维块匹配滤波BM4D(Block-Matching and 4D filtering)的高光谱遥感图像去噪方法。本发明可用于对高光谱遥感图像的噪声进行抑制。

背景技术

高光谱遥感图像是最近几十年发展起来的一种新兴遥感图像,它能更为全面,更为详细地描述地物特征。然而,高光谱遥感图像在成像及传播过程中受到很多复杂因素影响,会引入大量噪声,对高光谱遥感图像后续的应用带来很大困难。目前的高光谱遥感图像去噪方法主要分为两类:一类是基于变换域滤波的高光谱遥感图像去噪方法,该方法是对高光谱遥感图像采用某种变换方法,在变换域对高光谱遥感图像进行去噪处理;另一类是基于空间域滤波的高光谱遥感图像去噪方法,该方法是利用相邻像元间的相关性对高光谱遥感图像进行去噪。

Maggioni M,Katkovnik V,Egiazarian K三人在其发表的论文“Nonlocaltransform-domain filter for volumetric data denoising and reconstruction”(IEEE Transactions on Image Processing A Publication of the IEEE SignalProcessing Society,2013,22(1))中提出了一种基于非局部变换域滤波的高光谱遥感图像去噪方法。该方法首先把高光谱遥感图像分成一定大小的块,根据图像块之间的相似性,把具有相似结构的三维图像块组合在一起形成四维数组,然后用联合滤波的方法对这些四维数组进行处理,最后,通过逆变换,把处理后的结果返回到原图像中,从而得到去噪后的图像。该方法存在的不足之处是,没有考虑不同波段信噪比之间的差异而导致去噪结果中细节信息的模糊泛化。

武汉大学在其申请的专利文献“基于空间相关性的高光谱数据降噪方法及系统”(专利申请号CN201410821313.3,公开号CN104463808A)中公开了一种基于空间相关性的高光谱数据降噪方法。该方法首先求解高光谱数据中各个波段所成图像的平均图像,计算高光谱数据的协方差矩阵并进行特征值分解得到变换矩阵和特征值矩阵;然后再利用变换矩阵将高光谱数据进行线性投影,得到变换域中的三维数据,利用特征值矩阵对变换域中的三维数据进行降噪处理;最后,利用变换矩阵的逆矩阵对降噪后的变换域中的三维数据进行线性投影,重构得到降噪后的高光谱图像。该方法存在的不足之处是,没有考虑高光谱遥感图像的谱间相关性而导致去噪后的结果会丢失图像中的边缘轮廓信息和纹理信息。

发明内容

本发明的目的在于克服上述现有技术的不足,提出一种基于四维块匹配滤波的高光谱遥感图像去噪方法,使得去噪后的高光谱遥感图像能够更好地保持边缘轮廓信息和纹理信息。

实现本发明目的的思路是,利用高光谱遥感图像自身局部块之间的相似性来估计高光谱遥感图像中的噪声,将高光谱遥感图像中的待估计的图像块与其相似块滤波后的值作为该图像块的真实值。

为实现上述目的,本发明具体实现步骤如下:

(1)输入高光谱遥感图像。

利用高光谱遥感图像成像仪,输入一幅高光谱遥感图像。

(2)对高光谱遥感图像中的波段进行分组。

利用高通滤波器对高光谱遥感图像进行滤波,得到高光谱遥感图像的信号图像和高光谱遥感图像的噪声图像。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710240656.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top