[发明专利]一种基于热加工图的筒形件热强旋形/性一体化控制方法在审
申请号: | 201710190026.0 | 申请日: | 2017-03-28 |
公开(公告)号: | CN107121992A | 公开(公告)日: | 2017-09-01 |
发明(设计)人: | 夏琴香;朱宁远;程秀全;肖刚锋 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G05D23/30 | 分类号: | G05D23/30 |
代理公司: | 广州市华学知识产权代理有限公司44245 | 代理人: | 蔡克永 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 热加工 筒形件热强旋形 一体化 控制 方法 | ||
技术领域
本发明涉及热加工图,属于金属材料的热塑性成形领域。尤其涉及一种基于热加工图的筒形件热强旋形/性一体化控制方法。
背景技术
在传统塑性成形对尺寸精度要求的基础上,提出实现成形零件优越的组织性能,是当前塑性成形技术的特点及发展趋势。随着航空航天、国防军工、舰船等高精尖技术的发展,对同时具有较高尺寸精度和良好高温性能的筒形件的应用越来越广泛。但该类合金在室温下变形抗力大、塑性差,常温下进行塑性成形极为困难。具有点加载连续局部成形特点的热强旋成形是目前获得该类难变形金属筒形件的最有效方法之一。在热强旋过程中,由于热力耦合作用,其成形机理复杂,如何控制成形温度及各工艺参数之间的配合,是获得同时具有较高尺寸精度和良好高温性能筒形件的关键。
除材料化学组成外,微观组织形态是材料性能的决定因素。因此,在热强旋过程中微观组织的演变是决定产品性能的关键。为研究热强旋成形过程中微观组织的演变机制,常规方法采用金相显微镜(OM)、X射线衍射(XRD)、背散射电子衍射(EBSD)等对组织及织构进行实验研究。但由于实验手段的局限性,无法实现微观组织的动态观察,凭经验又很难进行预测以及控制,具有一定的盲目性、耗时费力。
形/性一体化控制是塑性成形技术的一个重要的发展方向。在旋压成形方面,目前主要关注于对宏观成形质量、旋压缺陷控制方面的工艺参数优化研究,对于微观组织演变机理的研究也均是采用上述实验方法,仅停留在对成形后的微观组织进行分析,没有将宏观的成形质量与微观的组织演变进行协同研究,且没有在组织演变物理机制的基础上提出具体的形/性一体化控制方法。
发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种基于热加工图的筒形件热强旋形/性一体化控制方法。避免了盲目地试验和材料的浪费,充分挖掘了材料的性能潜力。本发明技术方案中,既考虑加工过程中材料的宏观流动,又考虑材料变形时微观的组织演变,获得同时具有较高尺寸精度和良好组织性能的筒形件。
本发明通过下述技术方案实现:
一种基于热加工图的筒形件热强旋形/性一体化控制方法,包括如下步骤:
步骤(1):根据不同金属材料热塑性成形过程中发生动态再结晶的温度、应变速率及应变的不同,在发生动态再结晶的温度、应变速率及应变条件下进行金属材料高温力学性能试验;
步骤(2):对有限的试验温度、应变速率样本点数下获得的流变应力应变关系进行插值计算;
步骤(3):基于热塑性成形过程中功率的耗散及流变失稳判断准则,在扩展的高温力学性能试验获得流变应力应变关系的基础上,分别构建不同应变下的功率耗散图和流变失稳图;
步骤(4):将功率耗散图与流变失稳图进行组合,获得材料的热加工图;根据功率耗散率因子η的分布及流变失稳判据,分析获得满足流变失稳准则的潜在危险成形条件及安全成形条件下、功率耗散率因子η的有利于热塑性成形的成形条件;
步骤(5):最后根据热加工图获得的材料有利于热塑性成形的温度及应变速率,确定热强旋成形工艺参数,进行筒形件热强旋成形,获得满足尺寸精度及组织性能要求的筒形件。
上述步骤(1)所述金属材料为在热塑性成形过程中易发生动态再结晶的中低层错能金属或合金;步骤(1)所述高温力学性能试验温度在材料动态再结晶温度以下50℃与至热塑性成形温度以上50℃范围内。
上述步骤(5)所述热加工图为基于动态材料模型的热加工图。
上述步骤(1)所述高温力学性能试验应变速率按筒形件强力旋压应变速率分布范围取0.01/s-10/s;步骤(1)所述高温力学性能试验保证应变量为0.6以上。
上述步骤(2)所述插值计算为对温度及应变速率试验样本数进行扩展。
上述步骤(3)所述流变失稳准则中应变速率敏感系数m为流变应力σ对应变速率的偏导,其决定塑性变形所耗散的能量G与微观组织演变所耗散的能量J的分配;
材料在加工过程中单位时间内外力对单位体积材料所做的功P,即材料所获得的总能量,可由应力σ与应变速率相乘获得,其将转变为材料发生塑性变形所消耗的能量G及微观组织演变所消耗的能量J;
理想能量耗散系统认为塑性变形与微观组织演变所消耗的能量相等,但通常材料处于非线性能量耗散状态;为描述能量分配关系,采用流变应力σ对应变速率的偏导,即应变速率敏感系数m描述其分配比:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710190026.0/2.html,转载请声明来源钻瓜专利网。