[发明专利]Cu有效
申请号: | 201710189396.2 | 申请日: | 2017-03-27 |
公开(公告)号: | CN106944052B | 公开(公告)日: | 2020-01-31 |
发明(设计)人: | 缪应纯;徐晓林;刘开全;王宁宏 | 申请(专利权)人: | 曲靖师范学院 |
主分类号: | B01J23/72 | 分类号: | B01J23/72;A01N59/20;A01P1/00;A62D3/17;A62D101/20 |
代理公司: | 11371 北京超凡志成知识产权代理事务所(普通合伙) | 代理人: | 李佳 |
地址: | 65500*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | cu2 cu2cl oh tio2 三元 复合物 及其 制备 方法 | ||
本发明提供了Cu2+1O/Cu2Cl(OH)3/TiO2三元复合物及其制备方法。本发明解决了现有光催化剂光谱响应范围窄、光催化抑菌效果差等问题。Cu2+1O/Cu2Cl(OH)3/TiO2三元复合物,由金红石TiO2、赤铜矿Cu2+1O和Cu2Cl(OH)3组成异质结结构的纳米颗粒,所述纳米颗粒的粒径为80‑2000nm,所述三元复合物中钛原子与铜原子的摩尔比为65~1:1,优选65~2:1。该复合物作为光催化剂,用于抑制细菌或降解有机物,光催化适用的波长优选为300‑1200nm。
技术领域
本发明涉及生化技术领域,尤其是涉及Cu2+1O/Cu2Cl(OH)3/TiO2三元复合物及其制备方法。
背景技术
自20世纪英国科学家弗莱明、弗洛里和钱恩因发现抗生素-青霉素及其临床效用而共同获得诺贝尔奖以来,抗生素在控制人类感染性疾病方面发挥了巨大作用。到目前为止抗生素的种类繁多,数量巨大。据统计,全世界每年抗生素的消费量可达10-20万吨,而我国是抗生素的生产和消费大国。比如我国青霉素产量几乎占世界的70%,使用和销售量排在前15位的药品,其中有10种是抗生素。科技是把双刃剑,抗生素的发明应用是医药领域最伟大的成就之一,但细菌耐药现象也成为不可忽视的事实。尽管目前抗生素的检出浓度很低,但是因其会干扰生物体内的正常代谢及生长,对生物产生毒性效应,造成生物畸变或突变,同时会诱发大量抗药菌株和抗药基因的产生,更为严重的是持久存在的抗性基因可通过基因水平转移等机制在不同菌群间进行增殖和传播。随着医药、畜牧业和水产养殖业中长期大量的使用抗生素、甚至滥用,造成了环境中抗生素污染的加重,与之伴随的则是抗性细菌和抗性基因的产生、传播和扩散。2011年由携带抗性基因的O104:H4血清型肠出血性大肠杆菌引发的“毒黄瓜”事件,短期内蔓延到包括德国在内的9个国家,33人死亡,超过3,000人受感染。我国耐药菌引起的医院感染人数已占住院感染总人数的30%左右,已成为世界上细菌耐药性最严重的国家之一。抗生素滥用已经成为不争的事实,在抗生素污染不断蔓延的条件下,会有一些新的抗性基因整合到这些移动的遗传元件上,形成连锁效应,从而加速了多重抗性菌株的形成和蔓延,给致病菌感染性疾病的医治带来了极大的挑战,引发的生态环境和人类生命健康问题是不可估量的。每年就美国国内来说,由耐甲氧西林金黄色葡萄球菌引起的感染病而死亡的人数就远远超过艾滋病、帕金森症以及杀人犯的总数。加紧研究消除环境中的抗生素抗性菌的处理方法成为当务之急。目前抗生素、抗性细菌的消除方法有厌氧/好氧污泥消化处理,人工湿地、消毒处理、膜处理、高级氧化技术和光协同双氧水方法等。
但以上这些传统方法存在能耗高、耗时、规模小、普适性差、抗性基因的水平转移风险高等缺点。因此,寻找新材料和新技术广泛消除抗性细菌十分紧迫。与此同时,随着不可再生的传统能源的枯竭,“节能减排”是我国当前经济社会发展中,造福子孙后代的“重大工程”,同时也是科学研究需要解决的关键科学问题。如何高效利用新型清洁能源并应用于解决这一新型环境污染(抗性细菌)问题是目前的当务之急。
光催化氧化技术因其可利用可再生的太阳能激发半导体,产生光生电子和空穴对去氧化/还原有机物到H2O、CO2、无机离子,达到完全矿化的目的,同时具有能耗低、操作简单,常温常压下即可反应且避免二次污染的特点,而备受广泛关注。因此,近年来光催化消除细菌成为光催化技术的一个重要应用。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于曲靖师范学院,未经曲靖师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710189396.2/2.html,转载请声明来源钻瓜专利网。
- 计算机辅助地检测由部件构成的系统中一个或多个基于软件的程序运行中的错误的方法
- 一种电流馈电型大功率高频高压开关电源主电路
- 一种Cu<sub>2-x</sub>Se/石墨烯复合材料及其制备方法
- 一种Cu<sub>2-x</sub>Se/石墨烯复合材料的制备方法
- 一种Cu2‑xS热电材料的制备方法
- 一种基于壳聚糖/环糊精双核铜的手性传感器及其制备方法
- 有机铜剂Cu<sub>2</sub>(CH<sub>3</sub>COO)<sub>4</sub>(BET)<sub>2</sub>在制备抗肿瘤药物中的应用
- Fe<sub>3</sub>O<sub>4</sub>/Cu<sub>2-x</sub>S/Au核壳结构的纳米材料及制备方法
- 一种Cu2‑xS/CNT复合热电材料及其制备方法
- 一种Cu2‑xS/g‑C3N4异质结光催化剂及其制备方法
- 含吸电子侧基的活化和非活化单体的活性自由基聚合
- 一价铜的催化起始物Cu<sub>2</sub>(L)Cl<sub>2</sub>及其制备方法、氮杂环芳香化产物的制备方法
- 可逆吸附与分离CH2Cl2和CHCl3的Cu(II)-MOF、合成方法及配位体
- 一种Cu(Ⅱ)-Me(Ⅱ)-Cl溶液体系中分离Cu(Ⅱ)和Me(Ⅱ)的方法
- 将氯氟丙烷和氯氟丙烯转化成更需要的氟丙烷和氟丙烯
- 一种Cu(Ⅱ)-Me(Ⅱ)-Cl溶液体系中选择性沉淀Cu获取大颗粒富铜渣的方法
- 一种氨基酸多吡啶铜配合物及其制备方法和应用
- 光催化抗菌或降解有机物的方法
- 一种无机-有机杂化铜溴化物及其制备方法和应用
- 一种β相Cs<base:Sub>3
- 具有高光催化活性TiO<sub>2</sub>纳米晶体的制备方法
- 光阳极薄膜材料的制备方法
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 一种化纤用TiO<sub>2</sub>消光剂的配置工艺
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 利用紫外辐照在TiO2上固定蛋白并调控细胞亲和性的方法及TiO2‑蛋白产品
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法