[发明专利]一种列车车牌二值化图像融合方法有效

专利信息
申请号: 201710177461.X 申请日: 2017-03-23
公开(公告)号: CN106886987B 公开(公告)日: 2019-05-24
发明(设计)人: 文静;张亮;朱宇 申请(专利权)人: 重庆大学
主分类号: G06T5/50 分类号: G06T5/50;G06T7/90;G06T5/00;G06T7/12
代理公司: 重庆市前沿专利事务所(普通合伙) 50211 代理人: 顾晓玲
地址: 400044 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 列车 车牌 二值化 图像 融合 方法
【说明书】:

发明公开了一种列车车牌二值化图像融合方法,包括如下步骤:获取通道数据,该通道数据包括列车车牌彩色图像的R、G、B三个通道图以及列车车牌彩色图像的灰度图;获取通道数据的多个二值图,将用最大类间方差法获得的二值图,将获得的基于边缘的二值图以及获得的基于自适应分块最大类间方差法二值图进行逻辑‘或’操作;将得到的‘或’操作结果与获得的基于自适应加权高斯阈值方法的二值图进行逻辑‘与’操作,最后的结果即为最终理想二值图。本发明通过对多样化的列车车牌进行有效的二值化,并对二值化后的车牌之间进行逻辑操作,确保列车车牌号识别系统的较高准确率,为铁路交通提供了更为准确实时的交通信息。

技术领域

本发明属于计算机视觉技术领域,具体涉及一种针对我国列车车牌的二值化图像融合方法。

背景技术

以往记录列车(火车、动车、高铁等)车牌主要是依靠人为观察,而人为观察记录容易因为操作员的疲劳等因素造成失误,采用列车车牌号自动识别系统可以有效的替换原先人为操作过程。

列车车牌号自动识别是我国智慧交通建设中的重要一环,在我国列车轨道附近安装相应的识别系统,实时采集通过的列车图片,然后将自动识别出来的车牌号发送到相应的站点,各站点利用实时获取的列车信息进行有效的调度各自的列车班次。不仅促进列车有效的行驶,也为旅客,列车站提供了有效的实时信息。

二值化作为列车车牌号识别系统里面一个关键的图像处理操作,它的好坏程度直接影响到后面的字符分割提取,从而影响到最终的识别准确率。目前对汽车车牌的识别技术已经很成熟了,但是对于列车车牌的识别技术还未达到成熟阶段,与汽车车牌号相比,如图1所示,我国列车车牌号因为没有统一的标准导致样式多样。

目前,存在两类基于阈值的二值化方法,分别为全局二值化例如Otsu和局部二值化例如Niblack。其中,全局二值化方法适用于前后背景存在明显差值的图,但是,当图像光照不均时,全局二值化会造成二值化后,图像信息丢失。局部二值化因为是将图像分块进行二值化,因此对于退化的图片和光照不均的图片,局部二值化可以获得相对较好的结果,但是因为局部二值化对杂质敏感,导致最后的二值化图像噪声偏多。

目前已经有人提出了通过多种二值化图像融合的方法来实现各种二值化方法优势互补,人们主要是基于不同的阈值或者不同的方法获得多个二值图,对于如何将多个二值图融合,目前有两种使用较为广泛的方法,一种是基于投票机制法,一种是基于像素分类法。但是这两种方法均不能有效实现列车车牌二值化的识别。投票机制是对多个二值图的同一个像素点进行取值判断,当有一半以上的值为前景像素(1)则融合后为前景像素(1),反之为背景像素(0)。这种方法没有考虑不同二值图之间的的关系,而是直接统计个数。例如当进行融合的多个二值图中,基于全局二值化思想的方法多些,则这样直接统计个数,对数目偏少的局部二值化方法则不合理。因此该方法没有分析各个二值图直接的优缺点和方法,而是直接统计个数,实验证明对列车车牌二值化效果不好。基于像素分类法是采用两种二值化方法获得两个二值图,当这两个二值图对应的像素值都为前景像素(1)则为前景,都为背景像素则都为背景像素(0),当两个二值图对应的像素值一个为前景一个为后景则为不确定像素点,因此分为(前景像素,后景像素,不确定像素),然后对不确定像素进行分类。以不确定像素为中心,向周围局部范围进行迭代,当局部范围内前景像素总和大于背景像素总和则其判别为前景像素,反之为后景像素,当总和相同,则扩大局部范围进行判断,这个方法是基于一种聚类的假设,认为相同类别的像素之间应该更加接近,但是这只是一种先前对汽车车牌二值化或者文档二值化的假设,实验证明对列车车牌二值化效果不好。

归其原因是由于列车车牌虽然经过归一化后也能达到相同大小,但是此时里面的字符则不一样,无法达到一致的标准,因此不能简单用上面的二值化方法进行二值化。

发明内容

本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种列车车牌二值化图像融合方法。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710177461.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top