[发明专利]用于挖掘车险风险因子之间的关联规则的方法和装置在审

专利信息
申请号: 201710096388.3 申请日: 2017-02-22
公开(公告)号: CN108460685A 公开(公告)日: 2018-08-28
发明(设计)人: 朱杰;孙家棣 申请(专利权)人: 深圳市赛格车圣智联科技有限公司
主分类号: G06Q40/08 分类号: G06Q40/08;G06Q10/06;G06Q30/02
代理公司: 深圳市顺天达专利商标代理有限公司 44217 代理人: 郭伟刚
地址: 518000 广东省深圳市龙岗*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 风险因子 关联规则 车联网 车险 训练样本集 度数 方法和装置 关联 车辆信息 后续业务 分析 挖掘 大数据 置信 子集 集合 定价 驾驶 保险 应用
【说明书】:

发明提供了一种用于挖掘车险风险因子之间的关联规则的方法,包括以下步骤:步骤S1、根据传统风险因子和车联网新增风险因子,将驾驶者信息和车辆信息进行关联,形成训练样本集;以及步骤S2、使用Apriori算法对训练样本集进行分析,得到传统风险因子和车联网新增风险因子之间具有关联的对象的集合。在本发明中,对车险行业保险定价相关的传统风险因子和车联网新增风险因子包含的大量变量之间可能存在着的联系,基于大数据分析,应用Apriori算法,得到满足最小支持度数和最小置信度数的关联规则的对象,并提取我们感兴趣的子集用于后续业务分析。

技术领域

本发明涉及汽车领域,尤其涉及一种用于挖掘车险风险因子之间的关联规则的方法和装置。

背景技术

随着城市化的不断深入和推进,城市越来越拥挤,越来越多的家庭拥有了自己的车。在汽车保险中,保险定价的风险分类主要有从人因素、从车因素和道路环境因素。由此各国汽车保险的费率模式基本上可以划分为两大类,即从车费率模式和从人费率模式。

从车费率模式是指在确定保险费率的过程中主要以被保险车辆的风险因子作为影响费率确定因素的模式。从车费率模式具有体系简单,易于操作的特点。但是,从车费率模式的缺陷是显而易见的,因为在汽车的使用过程中对于风险的影响起到决定作用的是与车辆驾驶人有关的风险因子。

从人费率模式是指在确定保险费率的过程中主要以被保险车辆驾驶人的风险因子作为影响费率确定因素的模式。在从人费率模式中,从人因素包括传统风险因子和车联网新增风险因子。传统风险因子包括:驾驶人年龄、性别、驾龄、交通违章记录等。随着车联网的发展,车辆的驾驶数据可以上传到后台服务器,车联网新增风险因子包括行驶速度的平均值和方差,急加速、急减速和急转弯次数或频率,超速驾驶里程、时长、次数,疲劳驾驶里程、时长、次数,高峰时段驾驶里程、时长、次数,深夜时段驾驶里程、时长、次数,恶劣天气驾驶里程、时长、次数,恶劣路况驾驶里程、时长、次数等。因此,如果能够挖掘两者之间的关联规则,对于保险公司精确计算客户风险、细分客户群体将大有帮助。

发明内容

本发明的目的在于提供一种用于挖掘车险风险因子之间的关联规则的方法和装置以考察各因子的组合,挖掘之间的关联规则。

一方面,本发明实施例提供一种用于挖掘车险风险因子之间的关联规则的方法,包括以下步骤:

步骤S1、根据传统风险因子和车联网新增风险因子,将驾驶者信息和车辆信息进行关联,形成训练样本集;以及

步骤S2、使用Apriori算法对所述训练样本集进行分析,得到所述传统风险因子和所述车联网新增风险因子之间具有关联的对象的集合。

优选地,所述步骤S1包括:

步骤S11、将所述驾驶者信息和所述车辆信息进行关联,进行聚合统计操作;

步骤S12、以所述驾驶者信息和所述车辆信息为单位,整合车载智能终端上报的数据集、天气数据集、交通违章记录数据集、驾驶者和车辆基本资料数据集、保险公司理赔事宜数据集,形成所述训练样本集。

优选地,在所述步骤S1和所述步骤S2之间还包括:

将数值型表示的所述训练样本集转化成布尔型,并用稀疏矩阵表示。

优选地,所述步骤S2包括:

步骤S21、设定最小支持度数和最小置信度数;

步骤S22、对表示成稀疏矩阵的训练样本集应用Apriori算法获得支持度值,得到满足所述最小支持度数的对象;

步骤S23、对满足所述最小支持度数的对象进行Apriori计算,获得置信度值,得到满足所述最小置信度数的对象,并产生相应的关联规则集合;

步骤S24、对关联规则集合的对象排序,提取感兴趣的子集进行业务分析。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市赛格车圣智联科技有限公司,未经深圳市赛格车圣智联科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710096388.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top