[发明专利]一种基于卷积神经网络的电网设备分类方法有效
| 申请号: | 201710079894.1 | 申请日: | 2017-02-15 |
| 公开(公告)号: | CN106897739B | 公开(公告)日: | 2019-10-22 |
| 发明(设计)人: | 路永玲;胡成博;陶风波;徐家园;徐长福;马展;岳涛;刘浩杰;陈彤;丁俊峰;洪炜鑫 | 申请(专利权)人: | 国网江苏省电力公司电力科学研究院;国家电网公司;南京大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/02 |
| 代理公司: | 南京纵横知识产权代理有限公司 32224 | 代理人: | 董建林 |
| 地址: | 211103 江*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 卷积 神经网络 电网 设备 分类 方法 | ||
本发明公开了一种基于卷积神经网络的电网设备分类方法,步骤1,根据已有的电网设备图像训练集和测试集,训练卷积神经网络模型;输入层对输入的图像数据进行预处理,用以增大数据量;卷积层的数量不大于N,N+1为常用卷积神经网络卷积层的层数;步骤2,利用训练完成的卷积神经网络模型对需分类的电网设备图像进行分类。本发明利用数据增强技术将输入图像数据进行预处理,增大数据量,解决了数据量不足会导致网络过拟合,精度下降的问题;鉴于训练数据的数量较少,削减了卷积层数量和卷积核数目,同时增大卷积核的尺寸,减小了每层卷积层所提取出的特征图的大小,从而减少了卷积层提取出的特征数量,同样起到了防止过拟合的作用,提高了精度。
技术领域
本发明涉及一种基于卷积神经网络的电网设备分类方法,属于神经网络领域。
背景技术
电网设备识别在电网设备分类、状态监测和异常预警等领域有着非常重要的应用,是一项具有很高实用价值的技术。
近年来基于深度卷积神经网络的图像识别方法有了很多突破。但是,由于图像数据数量限制和CPU运算能力的限制,神经网络的精度一直难以突破,且训练效率很低。随着数据增强技术和使用GPU计算的实现,利用基于较少数据的深层卷积网络实现图像准确分类成为可能。
目前,主流的图像识别的方法分为两大类,第一类是基于边缘识别和特征提取的算法。这种方法根据灰度图像分割、彩色图像分割和纹理图像分割等分割方法得到图像的特征,然后通过特征匹配进行图像的分类。这种方法缺点在于计算量大,对噪声敏感,且不具有泛化能力。
第二类是基于深度卷积神经网络的算法。卷积神经网络主要用来识别位移、缩放及扭曲不变性的二维图像,其基本结构包括两层,其一为特征提取层,每个神经元输入与前一层的局部接受域相连,并提取该局部特征;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。
Alexnet是常用的卷积神经网络。Alexnet的结构在“Alex Krizhevsky,ImageNetclassification with Deep Convolutional Neural Networks”中提出。应用在电网设备的分类中,其结构可以用图1说明,InputLayer就是输入图片层,每个输入图片都将被缩放成227×227大小,分rgb三个颜色维度输入。Layer1~Layer5是卷积层,用于提取特征。在卷积滤波后,还接有ReLUs操作和max-pooling操作。Layer6~Layer8是全连接层,相当于在五层卷积层的基础上再加上一个三层的全连接神经网络分类器。
由于Alexnet的特征检测层通过训练数据进行学习,所以在使用时,避免了显式的特征提取,而是隐式从训练数据学习;由于其特征映射层中单独神经元在约束下共享相同的突触权值集,具有位移不变性的优点。
缺点在于对于较少的训练数据,Alexnet中过多的卷积层和卷积核非常容易出现数据的过拟合,使得训练完成的网络对于测试数据分类结果很不准确,没有实用性。
发明内容
为了解决上述技术问题,本发明提供了一种基于卷积神经网络的电网设备分类方法。
为了达到上述目的,本发明所采用的技术方案是:
一种基于卷积神经网络的电网设备分类方法,包括以下步骤,
步骤1,根据已有的电网设备图像训练集和测试集,训练卷积神经网络模型;
卷积神经网络模型包括输入层、卷积层、全连接层和Softmax层;所述输入层对输入的图像数据进行预处理,用以增大数据量;所述卷积层的数量不大于N,N+1为常用卷积神经网络卷积层的层数;
步骤2,利用训练完成的卷积神经网络模型对需分类的电网设备图像进行分类。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网江苏省电力公司电力科学研究院;国家电网公司;南京大学,未经国网江苏省电力公司电力科学研究院;国家电网公司;南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710079894.1/2.html,转载请声明来源钻瓜专利网。





