[发明专利]一种基于AM嵌套抽样算法的地下水模型评价方法有效
申请号: | 201710008901.9 | 申请日: | 2017-01-05 |
公开(公告)号: | CN106650293B | 公开(公告)日: | 2020-06-16 |
发明(设计)人: | 曾献奎;吴吉春;曹彤彤;王栋 | 申请(专利权)人: | 南京大学 |
主分类号: | G06F30/20 | 分类号: | G06F30/20 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 徐莹 |
地址: | 210046 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 am 嵌套 抽样 算法 地下水 模型 评价 方法 | ||
1.一种基于AM嵌套抽样算法的地下水模型选择方法,其特征在于:包括以下步骤:
(1)根据研究区的水文地质条件,建立一组不同结构的概念模型Mk(k=1,2,…,K)来表示实际地下水系统;
(2)根据研究问题选择一组水文地质参数作为参数向量θ并确定其先验概率分布p(θ|Mk),所述水文地质参数包括入渗补给系数、定水头边界水头、河床水力传导系数、渗透系数随机场的方差和相关长度;
(3)从先验分布p(θ|Mk)中随机生成参数向量θ的集合S={θ1,θ2,…,θN}作为有效集,并计算有效集中每个参数向量的联合似然函数L(θ|D,Mk),;
(4)确定嵌套抽样主算法的迭代次数R,在每次迭代过程中选出有效集S中最差的参数向量作为样本,并根据梯形公式计算边缘似然值的增量ΔZ;
(5)在每次迭代过程中,通过基于AM算法的局部限制抽样从先验分布p中生成新的参数向量θnew作为候选样本,以替代有效集中最差的样本;
(6)完成迭代后,根据有效集S和边缘似然值的增量ΔZ,计算各个概念模型的边缘似然值Z;
(7)根据计算的各个概念模型的边缘似然值,从小到大排序,选择边缘似然值最大的作为选择的地下水模型;
其中,步骤(4)对于第i(i=1,…,R)次迭代,计算有效集S中最小的参数向量θworst及其对应的似然函数Lworst,令Li=Lworst,计算先验分布累积Xi、每一次迭代中的边缘似然值Zi以及边缘似然值的增量ΔZ,其中Z0=0,L0=0:
步骤(5)通过局部限制抽样从参数先验分布中生成新参数向量θnew,若L(θnew|D,M)>Lworst,则用θnew取代原有θworst;否则,继续从局部限制抽样算法中生成θnew,直至满足L(θnew|D,M)>Lworst或达到人为定义的抽样次数上限为止;
步骤(5)基于AM算法的局部限制抽样包括以下步骤:
①从有效集S中随机选择某一参数向量θ作为初始参数向量
②确定AM算法的循环次数H,对于第j(j=1,…,H)次循环,从正态分布中生成新样本ξ,计算对应的联合似然函数值Lξ,其中Cj为协方差矩阵;
在T0次迭代前取固定值C0,之后自适应更新协方差矩阵计算公式如下:
式中,为已有的所有参数向量的协方差矩阵;
为方便计算,可以通过递归公式计算Cj+1:
式中,sd=(2.4)2/d,d是参数的维度,ε是一个大于0的常数,Id是d维单位矩阵,和分别表示前j-1次和j次的抽样的均值;
③若LξLworst,则计算接受概率否则α=0;
④从均匀分布U(0,1)中生成随机数u,比较u与α的大小;若u≤α则接受否则
⑤重复步骤②-④,直至生成长度为H的马尔可夫链为止;令
步骤(6)分别计算当前有效集S中的N个参数向量θ1,θ2,…,θN对应的似然函数L1,L2,…,LN,计算得到边缘似然值Z:
2.根据权利要求1所述的基于AM嵌套抽样算法的地下水模型选择方法,其特征在于:步骤(3)计算联合似然函数L(θ|D,Mk):
式中,C为协方差矩阵,为单位矩阵Id,μ为研究区地下水实测数据,Y为根据参数向量θ和模型通过数值模拟得到的数据,μ和Y是与地下水模型相关的状态变量,n为实测值和模拟值的个数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710008901.9/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种超导风暖照明一体机
- 下一篇:一种透平式空气压缩机定压控制系统