[发明专利]一种液力透平叶轮多工况多目标优化设计方法有效
申请号: | 201710003433.6 | 申请日: | 2017-01-04 |
公开(公告)号: | CN106874542B | 公开(公告)日: | 2020-11-13 |
发明(设计)人: | 曹新泽;曹大清;王秀礼 | 申请(专利权)人: | 滨州东瑞机械有限公司 |
主分类号: | G06F30/17 | 分类号: | G06F30/17;G06F30/27;G06F30/28;G06F113/08;G06F119/14;G06F111/06;G06F111/04 |
代理公司: | 济南泉城专利商标事务所 37218 | 代理人: | 张贵宾 |
地址: | 256500*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 透平 叶轮 工况 多目标 优化 设计 方法 | ||
本发明专利涉及水力机械的优化设计领域,特别是一种液力透平叶轮多工况多目标优化设计方法。本发明专利的有益效果在于:训练BP神经网络优化算法建立以及更新近似预测模型,减少大负荷的CFD计算,以较少次数计算,获得足够的预测精度。BP神经网络优化算法与NSGA‑Ⅱ多目标遗传算法的有机结合,保证整个算法在不断搜索最优解集的同时,兼顾了种群的多样性,精度也得以提升。采用NSGA‑Ⅱ多目标遗传算法对透平叶轮进行优化求解,能较好地解决液力透平叶轮传统设计与选型的困难以及液力透平运中偏离最优工况时易出现的振动、功率输出不稳定、效率大幅度偏低等问题,兼顾透平效率、轴向力与径向力,可有效改善透平运行能力。
技术领域
本发明专利涉及水力机械的优化设计领域,特别是一种液力透平叶轮多工况多目标优化设计方法。
背景技术
液力透平是将液体流体工质中的压力能转换为机械能的机械设备,利用液力透平可将工艺流程中的液体余压回收再利用,转换为机械能驱动机械设备,是一种能量回收装置,目前广泛应用于石油化工加氢裂化、大型合成氨以及海水淡化等领域。技术上,有20KW回收能量,就可用液力透平回收利用。能量回收液力透平技术及应用对节能减排有重要意义。液力透平主要有反转泵形式、冲击式、导叶式以及目前一些先进国家研发的专用能量回收液力透平。透平回收装置基本布置方式有直驱式和辅助式布置。液力透平能量回收装置应用广泛,其研究向着专门化、特殊化、多样化的方向发展。
目前国内普遍使用的液力透平以的反转泵为主,不仅运行效率偏低,而且高效区相对较窄,启动过程耗费时间长,运行工况不稳定,制约了能量回收工程领域的发展。泵反转作液力透平运行对流量变化十分敏感,流量高于最优工况的10%时能量回收效率下降50%,流量低于最优工况的40%时,水力透平无回收功率而且在偏离最优工况点运行时会出现振动和转速、输出功率不稳定等不良现象,由此可见液力透平存在对运行工况的变化较为敏感等一系列问题。国内外一些学者研究发现液力透平在运行时叶轮中的水力损失占总水力损失的50%以上,这就说明液力透平水力性能欠佳的主要原因在于其叶轮性能较差。而反转泵作液力透平,其运行在透平工况时常常达不到标准,出现效率低、运行稳定性差、使用寿命短、存在严重的噪声和振动等一系列问题。
基于液力透平以上一系列问题,本发明从透平的叶轮几何参数入手,结合BP神经网络算法以及多目标遗传算法NSGA-Ⅱ对透平进行多工况多目标优化求解,兼顾多个工况点的性能,使效率得以提高的同时保证了各工况的运行稳定性。经检索,与本发明专利相关的专利有:径流式液力透平优化设计方法(公开号:CN102608914 A),本发明公开了一种径流式液力透平通流部件整机优化设计方法,包含一元热力优化设计,以及整机优化平台,将复杂的多变量优化问题分解为多个相对独立却又相互作用的子问题,既保留了原问题的特性,又有效减少了计算量,但其仅针对单点优化,透平在偏离最优工况运行时易失稳现象并没有得到解决;考虑缺陷的大型透平膨胀机叶轮叶片结构优化设计方法(公开号:CN104331553A),在原有叶轮应力分析基础上,加入缺陷因素,利用广义回归神经网络和基于遗传算法的多目标优化算法对叶轮参数进行遗传优化操作,最终得到分布均匀的最优解作为叶轮叶片优化参数,但其优化过程较复杂繁琐。
发明内容
为了解决液力透平叶轮传统设计与选型的困难以及液力透平运行中偏离最优工况时易出现的振动、功率输出不稳定、效率大幅度偏低等问题,本发明专利提供一种液力透平叶轮多工况多目标优化设计方法,其目的是提高液力透平工作效率与偏工况点的运行稳定性。
本发明技术方案如下:
首先确定液力透平泵叶轮关键几何参数作为优化设计变量及样本数,采用试验方法生成样本并对其进行筛选得到符合要求的样本点,对初始样本进行液力透平整体自动化造型、网格划分与CFD计算获得相应性能参数,建立优化样本数据库,导入BP神经网络模块经学习训练后建立优化算法的近似代理模型,最后将其内嵌入NSGA-Ⅱ多目标遗传算法中,以0.7Q、1.0Q、1.2Q三个流量工况点下的效率、径向力和轴向力最优为目标,进行遗传算法的寻优求解,解出叶轮整体的最优解集。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于滨州东瑞机械有限公司,未经滨州东瑞机械有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710003433.6/2.html,转载请声明来源钻瓜专利网。