[发明专利]一种端到端的车牌识别方法有效

专利信息
申请号: 201611252131.4 申请日: 2016-12-30
公开(公告)号: CN106845487B 公开(公告)日: 2020-04-17
发明(设计)人: 周涛;冯琰一;吴志伟 申请(专利权)人: 佳都新太科技股份有限公司
主分类号: G06K9/34 分类号: G06K9/34;G06N3/04;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 510000 广东省广州市番禺区东环街迎宾*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 端到端 车牌 识别 方法
【权利要求书】:

1.一种端到端的车牌识别方法,其特征在于:设计了一种3层全卷积神经网络来快速预测字符的热力图,从而得到候选字符区域,该网络具体结构的设计与训练方法如下所示:

1)网络结构:第一层:3x3卷积,stride=1,pad=1,滤波器个数128,激活函数AFM,接2x2的池化,stride=2,pad=0;第二层:3x3卷积,stride=1,pad=1,滤波器个数256,激活函数AFM;第三层:3x3卷积,stride=1,pad=1,滤波器个数512,激活函数AFM;用第三层的特征图编码热力图,该网络结构有两个优势,一是热力图从高分辨率的特征图映射而来,得到的候选字符区域较精确,二是激活函数AFM,通过计算两组特征图的均值,减少字符噪声带来的干扰,并克服了传统激活函数RELU梯度饱和的问题;

2)训练方法:将网络输出的特征图拉升为一维向量,计算其与热力图的欧氏距离作为损失函数,通过批量随机梯度下降算法训练网络;

所述端到端的车牌识别方法还包括:

设计一种7层深度卷积神经网络模型来对候选字符区域进行分类与位置校正,其网络结构的设计与训练方法如下所示:

1)网络结构:该网络包括3个卷积层与4个全连接层,前3个卷积层与所述3层全卷积神经网络中的网络结构相同,并与之共享参数来减少计算量,卷积层后接2个256维的全连接层,作为字符区域分类与位置校正的特征,车牌字符共70种,特征后接71维,包括非字符的全连接层,用来识别字符,特征后接284维,即71X4,每个位置4个坐标的全连接层,用来预测字符位置;

2)训练方法:本网络的训练采用三任务同时学习的方式,第一任务,采用Softmax方法对候选字符区域进行分类,权重系数设为1;第二任务,采用双端平滑L1距离方法对候选字符区域进行位置校正,权重系数设为10;第三任务,采用重叠率loss,即直接计算预测矩形框与真实矩形框的重叠率作为损失值,用于对候选字符区域进行位置校正,权重系数设为10,该训练方式有两个优势,一是多任务的训练方式,能有效地提高候选区域的识别精度,二是对位置采用双端平滑L1和重叠率双重loss,能有效地保证小字符的位置回归精度;

还提出了一种基于模板的最优路径算法,该算法基于分类与位置校正结果,结合模板信息,自动选择最优车牌字符序列,其具体算法步骤如下:

S1:将所有候选字符基于识别置信度和位置用K均值聚类算法进行聚类,K取7,因为普通车牌均为7个字符,对每一类取置信度最高的字符作为最优字符,对周围重叠率大于阈值0.5的字符位置,按置信度加权计算位置坐标的平均值,以进一步校正最优字符的位置;

S2:依次假设最优字符为车牌的第i个字符,根据车牌的模板信息,以最优字符为中心分别向左和向右计算出剩余车牌字符的位置,并与所有候选字符的位置进行匹配,若有多个候选字符匹配,则取置信度高的作为匹配结果,对所有的识别结果按整体平均置信度排序,取最大的作为最终识别结果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于佳都新太科技股份有限公司,未经佳都新太科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611252131.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top