[发明专利]机器人视觉跟踪方法有效
申请号: | 201611094744.X | 申请日: | 2016-11-30 |
公开(公告)号: | CN106780539B | 公开(公告)日: | 2019-08-20 |
发明(设计)人: | 张超;王芳;李楠;吕翀 | 申请(专利权)人: | 航天科工智能机器人有限责任公司 |
主分类号: | G06T7/207 | 分类号: | G06T7/207;G06T7/277;G06T7/90 |
代理公司: | 北京鼎承知识产权代理有限公司 11551 | 代理人: | 管莹;肖琨 |
地址: | 100074 北京*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 机器人 视觉 跟踪 方法 | ||
1.一种机器人视觉跟踪方法,包括:
目标选择步骤,用于使用矩形框在当前帧的视频图像上选择图像作为将要跟踪的目标,以获得目标模型:s0={x0,y0,vx,vy,w,h};其中,(x0,y0)为矩形框的中心坐标;vx,vy为目标移动的速度,初始值为0;w为矩形框的列数,h为矩形框的行数;
位置信息获得步骤,用于基于所述矩形框的尺寸,获得所述目标的位置信息模板,位置信息模板分为x方向和y方向的模板,分别为目标矩形框大小的单通道图像;f(x,y)为模板(x,y)处的像素值,其中0≤x≤w-1,0≤y≤h-1;对x方向的模板有:对y方向的模板有:
颜色及位置信息融合步骤,用于融合所述目标的颜色信息和位置信息模板以生成五通道图像;
直方图生成步骤,用于根据所述五通道图像来生成用于表征所述目标模型的直方图;
目标匹配步骤,用于在下一帧的视频图像上通过粒子滤波方法获得与所述目标最佳匹配的估计目标;以及
目标判断步骤,用于判定所述估计目标是否为所述目标,以确定是否跟踪所述目标;
其中,所述粒子滤波方法包括:
基于状态转移矩阵、所述目标在获得上一帧图像时的目标模型以及噪声,估计所述目标在获得所述当前帧时的目标模型;
在所述当前时刻的目标模型周围分布预定数量的具有所述矩形框的尺寸的粒子,以获得粒子模型;
针对当前时刻的粒子的集合,基于Bhattacharyya系数计算各个权重值,其中Bhattacharyya系数由表征所述粒子模型的直方图以及表征所述目标模型的直方图计算得到;以及
根据所计算的权重值,估计当前时刻的粒子的集合的平均值,并且提取位置坐标作为所述估计目标的位置。
2.如权利要求1所述的机器人视觉跟踪方法,其中,在所述目标判断步骤判定所述估计目标是所述目标时,通过比例积分控制,使超声雷达正对所述目标,并通过比例积分控制,跟踪所述目标。
3.如权利要求1或2所述的机器人视觉跟踪方法,其中,在所述目标判断步骤判定所述估计目标不是所述目标时,则判定是否结束跟踪所述目标或继续寻找所述目标。
4.如权利要求1所述的机器人视觉跟踪方法,其中,所述颜色及位置信息融合步骤包括将表示所述目标的颜色信息的H、S、V三通道颜色信息以及所述矩形框的x和y方向的两通道目标颜色分布的相对位置信息模板进行融合,以生成具有所述矩形框的尺寸的所述五通道图像,其中所述五通道图像的每一个像素为包括颜色分量H、S、V、以及方向分量x、y的五维向量。
5.如权利要求1所述的机器人视觉跟踪方法,其中,在所述权重值中的最大值大于预定阈值时,判定所述估计目标是所述目标;否则,判定所述估计目标不是所述目标。
6.如权利要求1所述的机器人视觉跟踪方法,其中,所述目标模型为所述目标的中心坐标、所述目标的移动速度、所述矩形框的列数和行数的集合,其中所述目标的移动速度的初始值为零。
7.如权利要求1所述的机器人视觉跟踪方法,其中,所述粒子模型为所述粒子的中心坐标、所述粒子的移动速度、所述矩形框的列数和行数的集合,其中所述粒子的移动速度通过所述粒子的中心坐标与上一时刻的目标模型的中心坐标计算得到。
8.如权利要求4所述的机器人视觉跟踪方法,其中,所述直方图生成步骤包括:根据颜色分量H、S、V、以及方向分量x、y在各自预定范围内的概率,将所述五通道图像的全部像素分为预定数量的集合,以生成用于表征所述目标模型的直方图。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于航天科工智能机器人有限责任公司,未经航天科工智能机器人有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611094744.X/1.html,转载请声明来源钻瓜专利网。