[发明专利]一种燃料电池膜电极催化剂浆料的制备方法在审

专利信息
申请号: 201611063880.2 申请日: 2016-11-25
公开(公告)号: CN106654309A 公开(公告)日: 2017-05-10
发明(设计)人: 王诚;郑云;郭桂华;雷一杰;王建晨 申请(专利权)人: 清华大学;武汉喜玛拉雅光电科技股份有限公司
主分类号: H01M4/92 分类号: H01M4/92;H01M4/88;H01M8/1004
代理公司: 北京众合诚成知识产权代理有限公司11246 代理人: 陈波
地址: 100084 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 燃料电池 电极 催化剂 浆料 制备 方法
【说明书】:

技术领域

发明属于燃料电池技术领域,特别涉及一种燃料电池膜电极催化剂浆料的制备方法。

背景技术

燃料电池是一种能够将燃料和氧化剂中的化学能通过电化学反应转变为电能的连续发电装置。和现有的燃油类引擎(汽油和柴油发动机)相比,燃料电池具有环境友好的特点,能源效率高、功率范围广,在车用发电机、固定电站、移动电源等各个领域都有着广泛的应用前景,因此受到世界各个国家和地区的普遍重视。

燃料电池技术主要根据电解质不同分为几种类型:碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、质子交换膜燃料电池(又称聚合物电解质燃料电池)和固体氧化物燃料电池等。其中质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)的发展相对成熟,市场应用前景广泛。

作为质子交换膜燃料电池的核心部件,膜电极(Membrane Electrode Assembly,MEA)不仅是电子产生和分离的重要场所,同时承载了气体和产物水的传输,对质子交换膜燃料电池的电化学性能有十分重要的影响。其中膜电极主要由质子交换膜、催化剂和扩散层构成,作为影响膜电极电化学性能的关键,催化剂浆料的配制工艺至关重要,其性能的好坏,直接影响到所制备出的膜电极的性能,并最终影响到燃料电池的发电性能。

催化剂浆料的状态对所形成催化剂层的微观结构有着重要影响,根据有机溶剂的介电常数及其与质子导体聚合物的相互作用,当采用不同有机溶剂配制催化剂浆料时,浆料会呈现出不同的状态(溶液态、胶体态、共沉物),进而呈现出不同的催化特性。例如当浆料呈溶液状态时所形成的催化层性能一般不理想,而当浆料呈胶体状态时催化剂的利用率往往会得到提高,进而提高电池性能。除了有机溶剂种类之外,浆料中其它成分的配比、浆料分散方式等因素也会对膜电极的催化性能造成较大影响。因此,浆料制备的工艺控制是直接影响其性能的关键。

传统膜电极催化剂浆料的制备过程中,容易发生催化剂团聚和沉降的现象,会影响催化剂浆料的分散性和喷涂效果,进而影响催化剂的电化学性能。

发明内容

针对现有技术不足,本发明提供了一种燃料电池膜电极催化剂浆料的制备方法。本发明采用的技术方案为:

一种燃料电池膜电极催化剂浆料的制备方法,包括如下步骤:

(1)依次加入催化剂颗粒1.0~3.5wt%、水1.5~5.5wt%、高分子聚合物质子导体溶液5.0~25.0wt%、Teflon分散液0.5~5.0wt%,醇60.0~85.0wt%和增稠剂2.0~15wt%,使其混合;

(2)用磁力搅拌器搅拌10~100分钟,转速为300~800rpm;然后用剪切乳化机或均质机继续搅拌5~60分钟,转速为5000~20000rpm;最后用超声波震荡10分钟~2小时,超声功率为500~1500W;得到催化剂浆料。

所述步骤(1)中的混合物料中,催化剂颗粒、高分子聚合物质子导体、Teflon的质量比例为1:(0.2~0.5):(0.2~2.0)。

所述步骤(1)中的催化剂颗粒是含铂的催化剂颗粒。

所述含铂的催化剂颗粒为Pt/C催化剂颗粒。

所述步骤(1)中的高分子聚合物质子导体选自全氟磺酸树脂、磺化三氟苯乙烯树脂、聚甲基苯基磺酸硅氧烷树脂、磺化聚苯乙烯-聚乙烯共聚物中的一种或多种。

所述步骤(1)中的醇选自甲醇、乙醇、乙二醇、丙醇、异丙醇中的一种或多种。

所述步骤(1)中的增稠剂选自乙醇、乙二醇、异丙醇、乙酸乙酯、四氢呋喃中的一种或多种;优选为乙二醇。

本发明的有益效果为:

本发明通过控制加料顺序,添加增稠剂,并调整搅拌分散方式,一方面有效降低了催化剂颗粒的团聚、提高了催化剂的分散性能,另一方面有利于浆料中各种溶剂和高分子聚合物质子导体溶液的均匀分散,在后期干燥过程中,溶剂挥发后会留下一定量的空隙,均匀的空隙为催化层提供了更为连续的三相界面(催化剂活性组分、反应气体、高分子聚合物质子导体),同时也为水分的排除提供了流畅的通道。与此同时,加入适量的Teflon溶液可以去除组分中多余的水分,改善其疏水性、提高溶液分散性,有利于三相界面的形成并保持稳定。

改进的搅拌分散方式中,低速搅拌(磁力搅拌器)可促进各组分均匀混合,高速搅拌(剪切乳化机或均质机)可有效减少团聚、明显增加更为连续的三相界面和水分的排除通道,最后超声搅拌进一步提高各成分的分散性。三种分散方式有机结合,对于燃料电池电化学性能的改善更有针对性,也更有效,从而使得燃料电池的性能更加优异。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;武汉喜玛拉雅光电科技股份有限公司,未经清华大学;武汉喜玛拉雅光电科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611063880.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top