[发明专利]基于压缩跟踪与IHDR增量学习的视频人脸在线识别方法有效
| 申请号: | 201611042357.1 | 申请日: | 2016-11-21 |
| 公开(公告)号: | CN106778501B | 公开(公告)日: | 2021-05-28 |
| 发明(设计)人: | 吴怀宇;钟锐;程果;陈镜宇;何云 | 申请(专利权)人: | 武汉科技大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
| 代理公司: | 湖北武汉永嘉专利代理有限公司 42102 | 代理人: | 胡琳萍 |
| 地址: | 430081 湖北*** | 国省代码: | 湖北;42 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 压缩 跟踪 ihdr 增量 学习 视频 在线 识别 方法 | ||
1.一种基于压缩跟踪与IHDR增量学习的视频人脸在线识别方法,其特征在于:结合人脸检测算法与压缩跟踪算法对多姿态人脸进行检测,使用基于IHDR算法的增量学习机制对人脸特征库进行构建,采用该人脸特征库实现对人脸样本与类别的在线更新;在进行视频人脸识别时,利用人脸在视频中是连续运动的特点,基于人脸特征库检索进行人脸识别,当人脸被准确识别出来后,启用压缩跟踪算法对目标人脸进行跟踪;主要包含以下步骤:
步骤S1:通过人脸检测与压缩跟踪算法对摄像头中所捕获视频图像中的多姿态人脸进行检测;
步骤S2:对所检测到的人脸进行图像预处理以及CSLBP特征提取:对人脸区域进行预处理包括以下几种方式:直方图均衡化、双边滤波、背景图像去除以及图像尺度归一化;对经过图像预处理后的人脸图像进行CSLBP特征提取;
步骤S3:将所提取出来的CSLBP人脸特征作为检索向量对IHDR增量学习树进行搜索;
步骤S4:给定人脸检索的有效阈值α,设定当前所检测到的人脸特征与IHDR学习树所检索到的人脸特征的相似度为s,若相似度s≤α,且连续3帧都为该人脸,则判断当前检索是有效的;在视频帧中的目标人脸上输出该人脸标签,同时启用压缩跟踪算法对该人脸进行跟踪;在进行人脸跟踪过程中,不断判断当前人脸是否超出视频采集的边界,若没有,继续跟踪人脸,若超出边界,则跳转至步骤S1重新执行以上步骤;
步骤S5:若相似度α<s≤β,则判断当前人脸识别错误,重新进行人脸识别,转至步骤S1重新执行以上步骤;步骤S6:若相似度s>β,则判断当前人脸未曾学习过,给定该人脸标签,同时提取该人脸的CSLBP特征,应用分层聚类算法对人脸特征库进行在线增量更新;当所采集的人脸样本数达到所设定的阈值时,跳转至步骤S1重新执行以上步骤。
2.根据权利要求1所述的基于压缩跟踪与IHDR增量学习的视频人脸在线识别方法,其特征在于:步骤S1通过人脸检测与压缩跟踪算法对摄像头中所捕获视频图像中的多姿态人脸进行检测,主要包含以下步骤:
步骤S11:使用摄像头对图像进行采集,获取摄像头所捕获的当前图像帧,应用Haar特征与Adaboost算法对图像帧中的人脸进行检测;
步骤S12:若人脸检测成功,获取该人脸位置坐标,启动压缩跟踪算法对该人脸进行跟踪,在跟踪过程中不断判断跟踪窗口是否超出视频框,若跟踪窗口超出视频框未超出视频框,则保持对当前人脸的跟踪;若跟踪窗口超出视频框,转至步骤S11顺序执行;
步骤S13:若人脸检测失败,转至步骤S11顺序执行。
3.根据权利要求1所述的基于压缩跟踪与IHDR增量学习的视频人脸在线识别方法,其特征在于:步骤S3对IHDR增量学习树进行搜索的过程如下:
步骤S31:从IHDR增量学习树的第一层开始,计算出待检索向量与当前所在层所有聚类中心的欧式距离d;
步骤S32:给定IHDR树的检索精度λ,选取欧式距离最小的前λ个聚类,设置为活跃聚类,将所计算出来的欧氏距离值与所设置的检索敏感系数进行比较,若小于则停止检索,返回该聚类所对应的Y空间中的人脸标签yi;若大于则取消当前聚类的活跃标志,将该聚类的下一层子聚类作为活跃节点,并重复上述的迭代过程,直至满足所有条件直到搜索至IHDR树的叶子节点,输出叶子节点中的人脸标签yi,并返回该人脸与叶子节点样本的相似度s。
4.根据权利要求1所述的基于压缩跟踪与IHDR增量学习的视频人脸在线识别方法,其特征在于:步骤S6应用分层聚类算法对人脸特征库进行在线增量更新的过程如下:
步骤S61:根据所设定的聚类敏感系数η,将输出空间向量y1,y2,y3,...,yn划分为b个类,且b≤q,q为每个节点所能分裂的最大聚类个数;
步骤S62:根据输出空间的类别数b,将X输入空间中人脸训练样本的类别数也设定为b个类,应用欧氏距离对X空间中所有人脸训练样本进行聚类;
步骤S63:根据步骤S62所计算出的X空间的聚类结果,并结合X空间到Y空间的映射关系,重新对Y空间的聚类进行调整,计算出Y空间元素之间的欧式距离D;
步骤S64:若D>η,则将X空间中的聚类i进行下一层节点的聚类划分,使聚类变得更加细化;通过不断迭代执行步骤S62和步骤S63,直到所有聚类的条件满足设定值,则停止迭代,构树成功;
步骤S65:由于在不断学习过程中,陆续增加的学习样本会对整个IHDR增量学习树的叶子节点的均值与协方差造成影响,因此需要引入遗忘函数进行更新;
步骤S66:当需要在线添加新的训练样本时,从根节点出发,计算出该样本与当前所在层所有聚类中心的欧氏距离D,将所计算出来的距离值以递增方式排序,选取距离值最小的类,不断循环执行上述过程,直至将新增的训练样本插入到叶子节点中,完成当前样本的在线增量学习更新。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉科技大学,未经武汉科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611042357.1/1.html,转载请声明来源钻瓜专利网。





