[发明专利]一种导入人工智能超深度学习用于语音识别的方法在审

专利信息
申请号: 201611034336.5 申请日: 2016-11-14
公开(公告)号: CN108073985A 公开(公告)日: 2018-05-25
发明(设计)人: 张素菁 申请(专利权)人: 张素菁
主分类号: G06N3/08 分类号: G06N3/08;G10L15/16
代理公司: 暂无信息 代理人: 暂无信息
地址: 300010 天津市*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 语音识别 神经元 人工智能 机器学习 输入层 神经网络理论 信息处理领域 学习神经网络 神经 大脑神经元 计算复杂度 处理效率 概率尺度 神经信号 特征信息 信息输入 学习过程 语音信号 语音状态 触发 学习
【说明书】:

本发明涉及信息处理领域中的一种导入人工智能超深度学习用于语音识别的方法,其特征如下:语音信号的经过微机器学习产生特征值特征信息,或语音状态信息输入到超深度学习神经网络的输入层;输入层通过微机器学习输入到神经层;神经层以阀值为基准产生神经信号输入到头脑层,头脑层进行识别结果的判断。本发明实施效果是:将概率尺度作为触发神经元的阀值,与实际的大脑神经元的机理很接近,可实现真正的仿真头脑神经元的处理,可解决语音识别这样的复杂系的问题,而且计算复杂度为O2,学习过程目标明确,处理效率高,这将在神经网络理论上具有突破性。

【技术领域】

本发明属于信息处理领域,尤其是一种导入人工智能超深度学习用于语音识别的方法。

【背景技术】

当前在全世界范围内人工智能成为热点话题,与人工智能相关的专利也引人注目,在这方面日本著名古河机电公司发表了“图像处理方法和图像处理装置”(专利文献1)的专利申请,该专利提出通过人工智能的神经网络的算法选取图像的处理阀值从而高精度的将图像的轮廓抽出。

在汽车自动驾驶的应用中日本著名的丰田公司发表了“驾驶指向推定装置”的专利(专利文献2),该专利提出根据汽车自动驾驶过程中,针对突发的情况,即使驾驶员没有反映的情况下,通过人工智能的逆传递神经网络的机器学习算法,自动的选择驾驶状态,以避免行车事故的发生等。

【专利文献】

【专利文献1】(特开2013-109762)

【专利文献1】(特开2008-225923)

上述(专利文献1)和(专利文献2)都提到采用人工智能的神经网络算法,但是,神经网络算法中的加权值W,与阀值T在学习的过程中,要想得到最佳的解,需要将所有的状态都要进行测试,所要组合的总次数是{(W×T)n}×P,这里n为一层的神经网络的节点数,P为神经网络的层数,如此高指数的计算复杂度使计算量庞大,最终造成自组织收敛太慢;再加上加权值和阀值这两个参数是互关联的,针对整体的目标进行各个加权值和阀值的调节不能保证所得到的结果是整体的最佳解;另外,神经网络的模型中的阀值的定义属于初等数学,同人的大脑的神经网络的机理相差甚大,脑神经的刺激信号的原理不能在传统的神经网络模型中充分体现,人的头脑的根据神经元的神经信号所产生的兴奋程度不同进行不同的判断的机理在目前的神经网络的模型中也不能体现,再有目标函数往往是随机分布的,神经网络模型并没有考虑针对随机变量的处理等等,目前的神经网络模型只能是学术上的,代表一种方向性的理论,同达到实际应用的程度差距甚大。如今进入深度学习的阶段,同传统的神经网络相比只增加了隐藏层的数量,这更加使计算的复杂度加大,虽然在学习中导入了一些优化算法,但是并没脱离原来的神经网络的基础,传统神经网络的致命问题得不到解决,广泛应用的前景很难期待。

再有,组合理论通过图论解决最佳组合问题最初是由美国佛罗里达州大学 刘教授发明的,80年代初我国访问学者王教授提出了利用“墒”的最佳组合理论,该理论由于从理论上可以证明能够获得最佳的组合结果,因此引起世界学界的高度重视。然而,利用“墒”的最佳组合理论的问题点也是计算复杂度大,收敛慢致使应用受到局限。

人工智能的定义

什么是人工智能?简单讲就是用计算机实现人的头脑功能,即通过计算机实现人的头脑思维所产生的效果,人工智能算法所要处理的问题,以及处理后的结果是不可预测的。

目前之所以在社会上把普通的模式识别,机器人技术混同于人工智能,其根本原因就是对人工智能的概念不清楚,因此把一切先进的技术统统归属于人工智能,这反而会影响人工智能的发展。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于张素菁,未经张素菁许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611034336.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top