[发明专利]一种可视化智能运维方法及平台有效
申请号: | 201611030749.6 | 申请日: | 2016-11-22 |
公开(公告)号: | CN106649034B | 公开(公告)日: | 2020-08-28 |
发明(设计)人: | 赵立波 | 申请(专利权)人: | 北京锐安科技有限公司 |
主分类号: | G06F11/30 | 分类号: | G06F11/30 |
代理公司: | 北京君尚知识产权代理有限公司 11200 | 代理人: | 司立彬 |
地址: | 100192 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 可视化 智能 方法 平台 | ||
本发明公开了一种可视化智能运维方法及平台。本方法为:1)采集各网络安全设备中的各种结构类型协议数据的填充情况;2)根据每个时间段采集的各种结构类型协议数据的填充情况计算该时间段的特征向量;3)利用步骤2)得到的各特征向量进行模型训练,得到一决策模型;4)计算当前采集的协议数据的填充情况的特征向量,并将其输入该决策模型进行有效性评估。本发明能智能分析设备的数据质量,从而主动、及时发现问题,促使研发人员高效解决,保证设备提供网络安全服务的质量。
技术领域:
本发明涉及计算机数据通信领域,特别是对网络数据采集的效率进行了智能的运维管理,以保证网络数据采集的有效性。
背景技术:
随着近几年互联网和移动互联网用户的大量增长,需要大量高质量网络安全设备来予以保障。对网络设备的运行维护、实时监控更加重要。在IT运维监控系统中,将对企业的网络设备运行数据进行采集和处理,使得企业可以掌握和管理所有IT资源的运行情况。然而,现有的运维监控软件对设备的监控不够直观,对设备处理的数据质量无法智能的进行提示告警。
目前全国各地网络设备资源的显现度低,现场设备运行维护人员的工作往往具有难度大和工作量大的问题。目前运行维护人员的工作方式大多为被动响应式的,容易造成发现设备出现问题的时间比较滞后,不容易及时发现设备出现的一些小问题以及数据质量下降的一些问题,易造成问题积累而产生大问题出现大影响。现场接入网络的设备数量大,设备的性能参数和软硬件环境不完全相同,现场运维人员的工作仍主要采用手动监控方式,技术门槛较高,效率低下,很难及时发现和预见问题的发生。手动监控是一种离线的、片面的、以点见面式的检查方式,不能够持续对设备运行状态进行监控。更难以对整体系统的运行进行调优工作。另外,现场网络设备的监控需要通过大量的命令语句来进行管理和监控运行状态,有一定的技术难度,运行维护人员遇到问题往往过度依赖厂家。而厂家支持部门的人力资源严重不足,运行维护人员的工作负荷也过重,目前往往处于既要应对发现的明显问题的支持解决,又要面临不断改进服务和提高数据质量、分析故障原因的压力。
本发明旨在解决上述网络安全设备监控存在的缺陷,提出了一种智能分析设备数据质量和工作状态运行监控的可视化方法。
发明内容:
本发明提供了一种对网络安全设备数据质量进行可视化智能监控的平台,同时能够对设备运行状态监控告警,解决了目前运行维护监控存在的缺陷,为企业降低了设备维护和数据质量改进成本。
本发明的技术方案为:
一种可视化智能运维方法,其步骤为:
1)采集各网络安全设备中的各种结构类型协议数据的填充情况;
2)根据每个时间段采集的各种结构类型协议数据的填充情况计算该时间段的特征向量;其中,该特征向量M为协议数据种类数,Nj为第j类协议数据的总条数,xi为第j类协议数据中的第i条协议数据的填充情况;
3)利用步骤2)得到的各特征向量进行模型训练,得到一决策模型;
4)计算当前采集的协议数据的填充情况的特征向量,并将其输入该决策模型进行有效性评估。
进一步的,进行有效性评估的方法为:如果当前采集的协议数据的填充情况的特征向量与最近一段时期的特征向量变化超过设定阈值,则判定当前采集的协议数据失效。
进一步的,采用贝叶斯模型、SVM模型或人工神经网络模型对步骤2)得到的各特征向量进行模型训练,得到该决策模型。
进一步的,步骤1)中采集的数据还包括可视化智能运维服务器的即时运行状态信息。
进一步的,所述即时运行状态信息包括cpu使用率、内存使用率、磁盘占用率、硬盘io状态以及设定的关键进程服务是否正在运行。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京锐安科技有限公司,未经北京锐安科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611030749.6/2.html,转载请声明来源钻瓜专利网。