[发明专利]一种基于深度学习和躯干提取的行人识别系统及方法在审
申请号: | 201610972329.3 | 申请日: | 2016-11-07 |
公开(公告)号: | CN106650613A | 公开(公告)日: | 2017-05-10 |
发明(设计)人: | 李谦 | 申请(专利权)人: | 四川靓固科技集团有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/32;G06K9/46;G06K9/62 |
代理公司: | 成都九鼎天元知识产权代理有限公司51214 | 代理人: | 沈强 |
地址: | 621000 四川省绵阳*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 躯干 提取 行人 识别 系统 方法 | ||
技术领域
本发明涉及生物识别领域,尤其是一种基于深度学习和躯干提取的行人识别系统及方法。
背景技术
道路行人识别的核心是利用安装在运动车辆上的摄像机检测行人,从而估计出潜在的危险以便采取策略保护行人。基于统计分类的方法是通过机器学习,从一系列训练数据中得到一个分类器,利用该分类器对输入窗口图像进行识别,并判断是否为行人。基于统计分类方法的优点是鲁棒较好,但是需要很多训练数据,实时性差。目前,基于统计分类方法识别行人主要类型有:神经网络、支持向量机和AdaBoost方法。神经网络方法可以描述极为复杂的模式,已经成功地应用在字符识别和人脸检测上,它在行人的检测上也有应用,但实时性和鲁棒性都不够理想。支持向量机是基于结构风险最小化原理的统计学习理论,该方法比神经网络方法具有更好的泛化能力。
行人兼具刚性物体和柔性物体的特性,表观受光照、尺度、姿态、视角、部分遮挡和复杂场景等因素的影响,使得构建实用化的行人检测器挑战性极大。如何减弱甚至克服各种影响因素对识别的干扰,行人检测方法可大致分为三大类:基于全局特征的方法,基于人体部件的方法、基于立体视觉的方法。此外,除了检测方法的多样化和系统化,行人数据库也越来越完善,如MIT、Caltech、INRIA等行人数据库,这些行人数据库都为行人检测方法的研究提供了专业的检测和评估方法,但是仍然需要设计一种更完善的行人识别算法。。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种基于深度学习和躯干提取的行人识别系统及方法。本发明有效降低了行人检测的失误率,方法具有很强的实用价值。
本发明采用的技术方案如下:
一种基于深度学习和躯干提取的行人识别系统,其特征在于,所述系统包括:数据输入层、第一卷积层、子采样层、第二卷积层和数据输出层;所述数据输入层信号连接于第一卷积层;所述第一卷积层信号连接于子采样层;所述子采样层信号连接于第二卷积层;所述第二卷积层信号连接于数据输出层。
所述数据输入层用于获取原始的图像数据,对获取的图像数据进行预处理,将预处理后的图像数据发送给第一卷积层。
所述第一卷积层用于把输入的图像提取出多幅特征提取图,将提取出的多幅特征提取图发送给子采样层。
所述子采样层用于将获取的多幅特征提取图再次进行特征提取和取样压缩,将处理后的图像发送给第二卷积层。
所述第二卷积层用于将特征图提取成局部检测图,并通过隐藏层获得这些局部检测图的的评分。
所述系统还包括若干个遮挡滤波器,所述折当率波器分为不同等级,高一级的组件由低一级的组件构成,越是高级的组件也就越是完整,最高级的组件也可能处于被遮挡状态,进而得到局部检测图。
一种基于深度学习和躯干提取的行人识别系统的方法,其特征在于,所述方法包括以下步骤:
步骤1:首先对行人的整体特征进行提取,然后构建深度学习模型,获取图像累积梯度信息,找出行人目标可能存在的感兴趣区域;
步骤2:再对行人的局部特征进行进一步提取:构建躯干模型,利用纹理特征提取算法获取行人纹理特征;
步骤3:利用第一卷积层以及子采样层共同作用,形成模型的特征提取层,利用第二卷积层对特征提取图进行处理后得到局部检测图。
所述纹理特征提取算法的方法为:首先对像素点的梯度进行计算,根据计算结果寻找并将像素发生一定程度变化的区域作为感兴趣区域,对这些区域进行重点关注,减少特征提取的搜寻区域,增强特征计算的实时性;同时取区域中像素的平均亮度值为阈值平滑特征纹理信息。
综上所述,由于采用了上述技术方案,本发明的有益效果是:将变形处理引入到卷积神经网络,利用多层相互关联的网络来模拟人类的大脑的多层抽象机制和视觉信息的处理过程,逐层对输入图像进行抽象处理,提取图像的显著特征,实现对输入图像的抽象描述与分类,该基于深度学习和躯干提取的行人识别算法有效降低了行人检测的失误率,方法具有很强的实用价值。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的一种基于深度学习和躯干提取的行人识别系统的系统结构示意图。
图2是本发明的一种基于深度学习和躯干提取的行人识别系统的遮挡组件的模型示意图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川靓固科技集团有限公司,未经四川靓固科技集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610972329.3/2.html,转载请声明来源钻瓜专利网。
- 上一篇:道路汽车探测与分类方法
- 下一篇:一种动态校准方法和装置