[发明专利]一种基于荧光光谱的稻种发芽率无损检测方法在审
申请号: | 201610907616.6 | 申请日: | 2016-10-17 |
公开(公告)号: | CN107957410A | 公开(公告)日: | 2018-04-24 |
发明(设计)人: | 卢伟;杨洋;王家鹏;王新宇 | 申请(专利权)人: | 南京农业大学 |
主分类号: | G01N21/64 | 分类号: | G01N21/64;G01N1/28 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 21009*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 荧光 光谱 稻种 发芽率 无损 检测 方法 | ||
技术领域
本发明涉及一种稻种发芽率无损检测方法,特别是涉及一种基于荧光光谱法的稻种发芽率检测方法,属于稻种无损检测领域。
背景技术
我国是水稻生产大国,种植面积居世界第一。水稻种子的质量直接影响水稻产量,因此,加强稻种质量的检验对确保水稻产量具有重要意义。其中,发芽率是水稻种子检测的重要指标之一。传统的稻种发芽率检测如四唑(2,3,5-Triphenyl tetrazolium chloride,TTC)染色法(氯化三苯基四氮唑染色法),浸种时间长且TTC溶液易受光、温度等环境因素干扰,存在效率低、精度差、有损等问题;为降低人为检测误差并提高检测效率,采用机器视觉方法结合四唑法对染色后的水稻种子进行图像采集和识别,但图像处理速度慢且专业化要求高;近红外光谱法检测灵敏度差,且需采取不同的预处理方法才能获取不同稻种样品特异的吸收峰。热红外、偏振光及光声光谱等方法检测效果较好,但特征光谱较宽,有用信息较为分散,基于此技术进行产品化开发时光学部分较为复杂。
荧光光谱法通过检测特定波长激发光下物质产生的荧光强度对物质含量进行定性或定量的分析,因其扫描速度快、精度高且使用方便,已广泛应用于无损检测中,如采用新荧光扫描法对大败毒胶囊中小檗碱含量进行测定,检测精度约为紫外扫描法的8倍;应用日立F-4600型荧光分光光度计对貉体内砷含量进行测定,测量误差小于0.5μg;通过建立最佳激发波长的选择方法对八子补肾胶囊中蛇床子素含量进行测定,检测灵敏度较原波长的提高4倍;采用荧光分光光度计在547nm的激发波长下对水样品中罗丹明B的含量进行测定,在免去提取过程中有机溶剂使用的同时提高了检测效率;基于荧光共振能力转移(FRET)系统对乳制品中三聚氰胺(MB)含量进行测定,可准确得到荧光强度与MB间的相关系数为0.01亩摩尔/升。因此亟需研究一种高精度、高效率、无损检测稻种发芽率新方法。
发明内容
为克服现有技术的缺陷,本发明提出一种基于荧光光谱的稻种发芽率无损检测方法,具有高精度、高效率等优势。
为实现上述目的,本发明采用以下技术方案:
本发明所述的一种基于荧光光谱的稻种发芽率无损检测方法:
步骤1:将建模所需的不同发芽率稻种样品置入装有蒸馏水的试管中浸泡;
步骤2:取出试管中的浸泡液置于荧光分光光度计的样品池中,扫描浸泡液得到波长范围为360~650nm的荧光光谱;
步骤3:利用小波去噪对步骤2中得到的荧光光谱进行平滑处理;
步骤4:利用主成分分析(PCA)提取步骤3平滑处理后的荧光光谱中的特征波段;
步骤5:对建模所需的不同发芽率的稻种样品按照步骤1至步骤4进行操作,得到特征波段荧光光强Pi(为第i个样品的特征波段荧光光强,i=1,2…n,n为建模样本数量);对建模用的不同发芽率的稻种样品按照GB/T 3543.4表1规定的条件(20℃)和时间(5d)进行发芽试验,得到不同稻种样品的发芽率Gi(为第i个样品的发芽率,i=1,2…n,n为建模样本数量);
步骤6:基于深度神经网络(DNN)建立以步骤5中建模所需的不同发芽率的稻种样品特征波段荧光强度Pi为输入、稻种发芽率Gi为输出的稻种发芽率预测模型;
步骤7:对待测稻种按照步骤1至步骤4进行处理,将步骤4中提取的待测稻种特征波段荧光光谱输入到步骤6中建立的稻种发芽率预测模型,得到发芽率。
本发明所述的步骤3中小波去噪的步骤为:
步骤①:先对含噪光谱f(k)进行小波分解,采用‘sym8’小波基构造小波,分解层数为9,实现该步骤的Matlab代码为:
xd=wden(x,′sqtwolog′,′s′,′sln′,9,′sym8′)
其中x为原始信号,sqtwolog为阈值信号处理,s为软阈值,sln为根据第一层小波分解的噪声水平估计进行调整的参数,“9”代表分解为9层,sym8代表采用‘sym8’小波基构造小波;
步骤②:对小波分解得到的噪声部分进行sqtwolog阈值处理。获取域值的Matlab代码如下:
[thr,sorh,keepapp]=ddencmp(′den′,′wv′,nx)
其中x为信号向量,wv表示使用小波分解,den表示去噪声;返回参数thr为阈值,sorh决定硬阈值或软阈值,keepapp为判断是否对近似分量进行阈值处理的参数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京农业大学,未经南京农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610907616.6/2.html,转载请声明来源钻瓜专利网。