[发明专利]一种TiO2 有效
申请号: | 201610848029.4 | 申请日: | 2016-09-23 |
公开(公告)号: | CN107866211B | 公开(公告)日: | 2020-06-12 |
发明(设计)人: | 张杰潇;张万虹;许明德;严加松;邱中红;田辉平 | 申请(专利权)人: | 中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院 |
主分类号: | B01J21/06 | 分类号: | B01J21/06;B01J23/10;B01J27/16;C10G11/02 |
代理公司: | 北京润平知识产权代理有限公司 11283 | 代理人: | 刘国平;顾映芬 |
地址: | 100728 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 tio base sub | ||
本发明涉及TiO2溶胶领域,公开了一种TiO2溶胶及其制备方法和应用以及催化裂化催化剂及其制备方法。该TiO2溶胶的钛氯摩尔比为(0.2~0.6):1;且所述TiO2溶胶的腐蚀率≤1g/m2·h,pH值为5~8,20℃粘度≥1000mPa·s。本发明所提供的TiO2溶胶因其具有粘度大、腐蚀率小、以及pH值高的特点,在作为粘结剂用于制备催化裂化催化剂时,有利于增加催化裂化催化剂的比表面积,改善催化裂化催化剂的球形度,并有利于增强催化裂化催化剂的活性,改善催化裂化反应的产品分布,主要有利于目标产物汽油的生成。
技术领域
本发明涉及TiO2溶胶领域,具体地,涉及一种TiO2溶胶,该TiO2溶胶的制备方法,以及一种催化裂化催化剂及其制备方法。
背景技术
流化催化裂化工艺是原油二次加工的最重要的手段,随着FCC进料的重质化、劣质化的加深,催化剂中活性组分分子筛的含量已由早期的15~ 20wt%增加到目前的35wt%甚至40wt%以上。而随着分子筛含量的增加,催化剂的磨损指数及球形度已成为催化剂制备工艺中一项十分重要的问题。催化剂必须满足一定强度要求同时催化剂形成粒径在20~150微米,催化剂平均粒径在60~80微米左右的微球颗粒,才能满足催化裂化催化剂在反应装置中的正常流动运转。
目前我国FCC催化剂产品主要分为全合成分子筛催化剂、半合成分子筛催化剂及原位晶化法催化剂。全合成分子筛催化剂的制备流程采用的分子筛(X型或Y型)可以是Na型的,也可以将Na型分子筛预先用稀土离子或铵离子进行交换,再经干燥和焙烧,得到RE型或REH型分子筛,加入到全合成胶体中,经喷雾干燥制成球形催化剂;而加入Na型沸石,喷雾干燥后,经再交换和二次干燥亦可制成球形催化剂。半合成分子筛催化剂制备方法较多,主要的方法是将高岭土先与胶体混合,混有高岭土的胶体浆液与超稳Y型分子筛混合而得的浆液经喷雾干燥制成微球催化剂;将喷雾干燥后的催化剂再次浆化,然后用水洗涤除去反应时形成的Na+,再用可溶性稀土离子进行交换,交换后的催化剂再经洗涤除去未反应的稀土交换剂及可溶性盐类,二次干燥后即制成半合成分子筛催化剂。而原位晶化法则是使用天然高岭土作为初始原料,先采用一步法同时制备出活性组分和基质材料,再通过改性处理制备出高岭土型FCC催化剂。
随着催化剂活性组分分子筛含量的增加,全合成催化剂的制备方法已经不能满足催化剂对强度的要求,逐渐被半合成催化剂工艺所代替。这种半合成催化剂是采用高岭土为基质、分子筛为活性组分,各种硅/铝胶为粘结剂,将粘结剂、基质、活性基质制备成混合均匀的浆液再进行喷雾干燥而成。且因其制备工艺简单,制备成本低,在高分子筛含量时具有很好的强度的优势,逐渐获得了广泛的应用。
随着催化剂性能需要逐步提高,改进催化裂化催化剂制备工艺以提高催化剂性能已经成为催化剂发展关键问题,而其中选择适当的粘结剂是改进催化裂化催化剂制备工艺的重要环节。因此急需开发更多适用于催化裂化催化剂制备工艺的新型溶胶。
纳米TiO2溶胶是一种广泛应用于催化化学、吸附、传感器、化妆品、感光材料、陶瓷添加剂,电子工程等领域的高功能精细无机材料,目前合成纳米TiO2的方法主要是传统的溶胶~凝胶法。如下将给出几种现有TiO2溶胶的制备方法:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院,未经中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610848029.4/2.html,转载请声明来源钻瓜专利网。
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法