[发明专利]智慧城市公共监控系统在审

专利信息
申请号: 201610792802.X 申请日: 2016-08-31
公开(公告)号: CN107742092A 公开(公告)日: 2018-02-27
发明(设计)人: 彭青 申请(专利权)人: 彭青
主分类号: G06K9/00 分类号: G06K9/00;G06Q50/26;H04N7/18
代理公司: 暂无信息 代理人: 暂无信息
地址: 066004 河北省*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 智慧 城市 公共 监控 系统
【说明书】:

技术领域

发明涉及城市监控领域,尤其涉及一种智慧城市公共监控系统。

背景技术

智慧城市就是运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,从而对包括民生、环保、公共安全、城市服务、工商业活动在内的各种需求做出智能响应。其实质是利用先进的信息技术,实现城市智慧式管理和运行,进而为城市中的人创造更美好的生活,促进城市的和谐、可持续成长。

随着人类社会的不断发展,未来城市将承载越来越多的人口。目前,许多国家正处于城镇化加速发展的时期,部分地区“城市病”问题日益严峻。为解决城市发展难题,实现城市可持续发展,建设智慧城市已成为当今世界城市发展不可逆转的历史潮流。

智慧城市的建设在国内外许多地区已经展开,并取得了一系列成果,国内的如智慧上海、智慧双流;国外如新加坡的“智慧国计划”、韩国的“U-City计划”等。

由于智慧城市对公共区域的监控要求很高,其涉及到智慧城市的整体安全性能。然而,现有技术中智慧城市的公共监控手段比较落后,对人员的检测设备精度不高,无法满足智慧城市的建设需求。因此,需要一种新的智慧城市人员鉴别方案。

发明内容

为了解决上述问题,本发明提供了一种智慧城市公共监控系统,对智慧城市公共监控设备进行性能升级,通过引入高精度的人脸识别技术和高容量的网络通讯技术实现高效率的智慧城市公共监控设备,从而快速、准确地鉴别出非授权人员,提高智慧城市的整体安全性。

根据本发明的一方面,提供了一种智慧城市公共监控系统,所述系统包括高清摄像头、图像预检测设备、人脸检测设备和语音警报设备,高清摄像头、图像预检测设备与人脸检测设备顺序连接,语音警报设备与人脸检测设备连接,用于基于人脸检测设备的输出确定是否进行语音报警。

更具体地,在所述智慧城市公共监控系统中,包括:高清摄像头,设置在监控区域上方,用于对监控区域的场景进行图像采集以输出高清图像;图像预检测设备,与高清摄像头连接,用于从高清图像处提取高清脸部图像,并在检测到高清脸部图像中存在带口罩或带墨镜的脸部特征时,将高清脸部图像发送给对比度增强设备;语音警报设备,与特征向量比较子设备连接,用于在接收人脸识别失败信号时发出危险人物报警信号;对比度增强设备,与图像预检测设备连接,用于接收高清脸部图像,并对高清脸部图像进行对比度增强处理以获得增强脸部图像;灰度化处理设备,与对比度增强设备连接,用于接收增强脸部图像,并对增强脸部图像进行灰度化处理以获得灰度化图像;光线调整设备,与灰度化处理设备连接,用于接收灰度化图像,基于灰度化图像中各个像素的灰度值确定灰度化图像的平均亮度,并将灰度化图像的平均亮度与预设亮度进行比较,当灰度化图像的平均亮度大于等于预设亮度,对灰度化图像进行亮度降低调整以获得光线调整图像,当灰度化图像的平均亮度小于预设亮度,对灰度化图像进行亮度提升调整以获得光线调整图像;自适应递归滤波处理设备,与光线调整设备连接,用于接收光线调整图像,并对光线调整图像执行自适应递归滤波处理以获得滤波图像;特征提取设备,与IP解包设备连接,还与自适应递归滤波处理设备连接以对接收到的滤波图像进行处理;特征提取设备包括复杂度检测子设备、像素处理子设备、矩阵转换子设备、特征向量获取子设备和特征向量比较子设备;复杂度检测子设备与自适应递归滤波处理设备连接,用于计算滤波图像的复杂度,基于滤波图像的复杂度选择像素矩阵的大小,滤波图像的复杂度越高,选择的像素矩阵越大;像素处理子设备分别与复杂度检测子设备和自适应递归滤波处理设备连接,用于接收滤波图像,针对滤波图像的每一个像素作为对象像素执行以下处理:将对象像素作为复杂度检测子设备确定的像素矩阵的中心像素在滤波图像中获取对象像素矩阵,对象像素矩阵的大小与复杂度检测子设备确定的像素矩阵的大小相同,将对象像素矩阵内除了对象像素之外的每一个像素作为参考像素与对象像素进行比较,以获得二值化矩阵,二值化矩阵的大小与对象像素矩阵的大小相同,二值化矩阵由多个参考像素分别对应的多个二值化像素组成,参考像素大于等于对象像素,则参考像素对应的二值化像素的像素值为1,参考像素小于对象像素,则参考像素对应的二值化像素的像素值为0;矩阵转换子设备与像素处理子设备连接,用于将每一个对象像素对应的二值化矩阵转换成目标十进制数,具体转换操作为:将每一个对象像素对应的二值化矩阵的所有二值化像素值按其在二值化矩阵中的位置以先左后右再先上后下的顺序组成一个二进制数作为目标二进制数,再将目标二进制数转化成十进制数以作为目标十进制数;特征向量获取子设备分别与自适应递归滤波处理设备和矩阵转换子设备连接,用于将滤波图像中每一个对象像素的像素值替换成该对象像素对应的目标十进制数并按照对象像素在滤波图像中的位置将所有对象像素对应的目标十进制数组成一维特征向量,作为目标特征向量输出;特征向量比较子设备分别与特征向量获取子设备和IP解包设备连接,用于将目标特征向量分别与各个基准特征向量进行匹配,匹配成功则输出人脸识别成功信号以及与匹配到的基准特征向量对应的授权用户名称,匹配失败则输出人脸识别失败信号;IP解包设备,用于与远程的数据服务器网络连接,通过网络接收来自数据服务器处的IP数据包,并对IP数据包解包以获得6LowPAN数据包;其中,IP数据包是对6LowPAN数据包进行打IP包后而获得的数据包,6LowPAN数据包中的负载包括数据服务器处的各个基准特征向量,6LowPAN数据包中的头部是压缩数据,解压后的6LowPAN数据包中的头部用于对6LowPAN数据包中的负载进行解析;其中,每一个基准特征向量为对相应授权用户基准面部图像预先进行与特征提取设备相同操作的特征向量提取而获得的向量;边缘传感设备,与IP解包设备连接,用于接收IP解包设备输出的6LowPAN数据包,获得呈现为压缩数据的6LowPAN数据包的头部,对6LowPAN数据包的头部解压以获得解压后的6LowPAN数据包中的头部;6LowPAN解包设备,与边缘传感设备连接,用于接收6LowPAN数据包以获取6LowPAN数据包中的负载,并基于解压后的6LowPAN数据包中的头部对6LowPAN数据包中的负载进行解析,以获得各个基准特征向量。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于彭青,未经彭青许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610792802.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top