[发明专利]一种多传感器目标识别属性约简方法及装置在审
申请号: | 201610365637.X | 申请日: | 2016-05-27 |
公开(公告)号: | CN107437089A | 公开(公告)日: | 2017-12-05 |
发明(设计)人: | 陈迎春;段晓菡;李鸥;赵世斌;孙昱;童珉;冉晓旻;张静;莫有权;董芳 | 申请(专利权)人: | 中国人民解放军信息工程大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京集佳知识产权代理有限公司11227 | 代理人: | 王宝筠 |
地址: | 450002 河南省*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 传感器 目标 识别 属性 方法 装置 | ||
技术领域
本发明涉及目标识别技术领域,尤其涉及一种多传感器目标识别属性约简方法及装置。
背景技术
粗糙集是一种研究不精确、不确定性知识的数学工具。该理论已经在数据挖掘、机器学习、过程控制、决策分析和模式识别等领域得到了广泛的应用,并取得了良好的效果。属性约简是粗糙集理论中的一个重要课题,其是在保持分类能力不变的前提下,通过对知识的化简导出问题的决策或分类规则,它的意义在于可以删除冗余信息。
多传感器应用在目标识别领域是现阶段知识发现的热门问题。传感器能够提供多样、多维度、实时的大量数据作为数据基础进行目标识别,但是随之而来的是高维度数据的处理问题。
在利用多传感器的数据之前,属性约简是一个必要的工作,删除冗余属性可以提高目标识别时的计算效率。但是传感器数据的多样、多维度的特性以及数据的非线性,使得传统的属性约简算法无法很好地运作。而粗糙集理论可以很好地处理这类不规则的数据,但是,传感器数据的数据特性以及粗糙集的自身特性限制粗糙集在传感器数据上的应用广度。
发明内容
有鉴于此,本发明提供了一种多传感器目标识别属性约简方法及装置,用以解决传感器数据的数据特性以及粗糙集的自身特性限制粗糙集在传感器数据上的应用广度的技术问题,其技术方案如下:
一种多传感器目标识别属性约简方法,所述方法包括:
对传感器采集的数据进行预处理,获得多个目标属性数据,所述预处理用于将所述传感器采集的数据处理成预设格式的可读数据;
针对所述多个目标属性数据中的每个目标属性数据,基于预先设定的目标识别的类别数量参数,使用Kmeans聚类方法按预设规则确定与所述目标属性数据对应的目标聚类数量,并将与所述目标聚类数量对应的聚类结果进行数据模糊处理,获得与所述目标属性数据对应的模糊处理结果;
利用粗糙集算法对与各个目标属性数据对应的模糊处理结果进行属性约简,获得属性约简结果。
其中,所述基于预先设定的目标识别的类别数量参数,使用Kmeans聚类方法按预设规则确定与所述目标属性数据对应的目标聚类数量,包括:
利用Kmeans聚类方法对所述目标属性数据进行多次聚类,并在每次聚类后基于聚类结果计算类簇指标,所述多次聚类依次进行,且所述多次聚类中的首次聚类的聚类数量为所述预先设定的目标识别的类别数量参数,其它次聚类的聚类数量均在前一次聚类数量的基础上递减1,所述多次聚类中最后一次聚类的聚类数量为1;
通过每次聚类的聚类数量,以及与各个聚类数量对应的类簇指标绘制类簇指标曲线,并基于所述类簇指标曲线中的拐点从多个聚类数量中确定出所述目标聚类数量。
其中,所述将与所述目标聚类数量对应的聚类结果进行数据模糊处理,具体为:
将与所述目标聚类数量对应的聚类结果中的各个类簇的值用对应类簇的中心值替代。
其中,所述基于聚类结果计算类簇指标,具体为:
计算所述聚类结果中每个类簇的平均质心距离,并基于所述每个类簇的平均质心距离以及为每个类簇设置的加权值计算所述聚类结果中所有类簇的平均质心距离的加权平均值作为所述类簇指标。
其中,所述利用粗糙集对与各个目标属性数据对应的模糊处理结果进行属性约简,获得属性约简结果,包括:
基于所述模糊处理结果利用相对正域求出相容与不相容信息系统的核,并基于所述相容与不相容信息系统的核求得属性约简集。
一种多传感器目标识别属性约简装置,所述装置包括:预处理模块、数据模糊模块和属性约简模块;
所述预处理模块,用于对传感器采集的数据进行预处理,获得多个目标属性数据,所述预处理用于将所述传感器采集的数据处理成预设格式的可读数据;
所述数据模糊模块,用于针对所述预处理模块处理得到的所述多个目标属性数据中的每个目标属性数据,基于预先设定的目标识别的类别数量参数,使用Kmeans聚类方法按预设规则确定与所述目标属性数据对应的目标聚类数量,并将与所述目标聚类数量对应的聚类结果进行数据模糊处理,获得与所述目标属性数据对应的模糊处理结果;
所述属性约简模块,用于利用粗糙集算法对所述数据模糊模块处理得到的、与各个目标属性数据对应的模糊处理结果进行属性约简,获得属性约简结果。
其中,所述数据模糊模块包括:聚类子模块、计算子模块、曲线绘制子模块和确定子模块;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军信息工程大学,未经中国人民解放军信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610365637.X/2.html,转载请声明来源钻瓜专利网。