[发明专利]一种基于城市区域网格自适应的PM2.5浓度推测方法有效

专利信息
申请号: 201610146147.0 申请日: 2016-03-15
公开(公告)号: CN105740643B 公开(公告)日: 2018-08-07
发明(设计)人: 戴国骏;郭鸿杰;张桦;吴以凡;仇建 申请(专利权)人: 杭州电子科技大学
主分类号: G06F17/18 分类号: G06F17/18;G06N3/02
代理公司: 浙江杭州金通专利事务所有限公司 33100 代理人: 王佳健
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 城市 区域 网格 自适应 pm sub 2.5 浓度 推测 方法
【说明书】:

发明涉及一种基于城市区域网格自适应的PM2.5浓度推测方法。本发明首先将城市区域网格化,利用出租车采集原始PM2.5浓度数据,再制定标准,将网格分辨率标准化,利用提取到的网格特征离线训练网格分辨率细化等级和网格特征间的对应关系,实时推测城市浓度时,首先利用提取到的实时网格特征和训练模型,计算出网格所要调整的分辨率,重新划分网格,最后利用线性回归模型推测出每个网格的PM2.5浓度数据,得到城市区域PM2.5浓度数据分布图。本发明方法系统可扩展性强,精确度高,计算量小,为居民出行活动提供参考,并帮助管理部门寻找污染源,改善城市环境质量。

技术领域

本发明涉及传感器网络技术、计算机应用技术和数据挖掘技术,是一种基于城市区域网格自适应的PM2.5浓度推测方法。

背景技术

PM2.5被认为是对公众健康和环境造成最大影响的污染物,特别是像北京这样的发展中国家大城市更是深受PM2.5的危害。由于复杂的城市结构和多样的城市功能区,传统的监测站监测PM2.5的方法根本无法告诉城市居民实时准确的PM2.5浓度。

近年来,许多学者试图提供更加细粒度的城市污染物浓度分布,他们将PM2.5采集装置安装在公交车或者出租车顶,让交通工具实时自主的采集城市PM2.5数据,结合机器学习,数据挖掘等技术推测出交通工具未覆盖区域的PM2.5浓度,最后给出城市区域细粒度,固定分辨率的PM2.5浓度分布图。这种方法能提供精确的城市PM2.5浓度分布,但是其将城市区域划分成 100m*100m或者200m*200m的过小的固定分辨率网格增加了算法计算量,降低了系统扩展性,不利于推广到大范围PM2.5浓度监测。

总的来说,城市区域网格自适应调整下推测城市PM2.5浓度十分重要,过大的网格导致无法接受的推测误差,而过小的网格导致过多的计算量。

发明内容

本发明针对现有城市网格划分不足和传统监测PM2.5浓度的缺点,结合传感器网络,数据挖掘等技术,提出了一种基于城市区域网格自适应的 PM2.5浓度推测方法。

本发明主要由以下几个步骤构成:1、城市区域网格化,并采集城市 PM2.5原始数据2、网格分辨率标准化3、网格特征提取4、离线训练5、重新划分网格6、在线推测。

本发明方法的具体步骤是:

步骤(1)、城市区域网格化,并采集城市PM2.5原始数据。具体是将城市区域划分成500m*500m大小的初始分辨率网格,车顶安装PM2.5采集设备的出租车随机行驶于城市道路,采集城市区域PM2.5浓度数据。

步骤(2)、网格分辨率标准化。本发明方法定义了4种不同分辨率的网格,分别为1000m*1000m,500m*500m,250m*250m,125m*125m,并定义了4种相应的网格分辨率细化等级,分别为-1,0,1,2。根据PM2.5国家标准和PM2.5浓度变化对人体健康的影响,本发明方法制定了网格分辨率细化等级计算方法如下式所示:

MDV=(|xij-xi-1j|+|xij-xi+1j|+|xij-xij-1|+|xij-xij-1|)/4

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610146147.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top