[发明专利]一种基于经验模态分解的音频识别方法及系统有效

专利信息
申请号: 201610103443.2 申请日: 2016-02-25
公开(公告)号: CN105788603B 公开(公告)日: 2019-04-16
发明(设计)人: 岳廷明 申请(专利权)人: 深圳创维数字技术有限公司;深圳市创维软件有限公司
主分类号: G10L21/0208 分类号: G10L21/0208;G10L25/18;G10L25/54;G10L15/02
代理公司: 深圳市君胜知识产权代理事务所(普通合伙) 44268 代理人: 王永文;刘文求
地址: 518057 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 经验 分解 音频 识别 方法 系统
【说明书】:

发明公开一种基于经验模态分解的音频识别方法及系统。其中,方法包括步骤:A、输入原始音频信号,对所述原始音频信号进行采样,然后依次进行去噪预处理、加汉明窗以及傅氏变换处理得到频谱数据,再依次连接每帧的频谱数据,获得声谱图;B、获得所述声谱图各频率段的能量最大值所在点,并依次连接各频率段的能量最大值所在点生成时间‑频率曲线;C、将所述生成的时间‑频率曲线进行经验模态分解,获得多个本征模函数;D、通过获得的多个本征模函数结合相应的频率段以及时间帧,生成用于表征原始音频信号的多个特征值,并输出。本发明将音频特征的变化趋势信息充分融合到特征值的生成,使生成的特征值更完整的表征音频信号。

技术领域

本发明涉及音频识别领域,尤其涉及一种基于经验模态分解的音频识别方法及系统。

背景技术

音频识别是指通过对音频信号进行频谱分析,获得音频信号的频谱,提取音频信号的特征值,构建模型或星座图,进行目标匹配、识别。主要技术包括短时傅氏变换、声谱图特征提取、特征模板生成等。

对一段原始音频或语音的具体处理大多经过如下步骤:预加重(Pre-emphasis)去噪、分帧、加窗处理、快速傅里叶转换(FFT)、滤波组处理(Mel-Filter Bank)、离散余弦转换DCT(计算倒谱参数)、对数能量、差量倒谱参数(向量形式、逆傅氏变换IFFT)、MFCC(梅尔频率倒谱系数---一帧音频的特征值)等,最终获得一段音频信号的一系列特征值,此系列特征值可充分、完全表征此段音频信号。

目前,主流音频信号的匹配识别算法主要是对声谱图(描述了特定频率的强度随着时间的变化)进行处理,包括比较时间、频率变化和不同或者寻找波峰。其中的一个主要技术实现方案为将频率转换为音符进行处理,每个音符对应一个音域,形成一个N维的特征向量,再经过过滤和标准化处理,获得特征声谱图,通过滑动子图的方法获得音频声纹,并针对声纹计算位错误率完成识别匹配。另一个主要技术方案为获取一段声谱图的一系列极大值点,获得此极大值点的所处的时间点和频率,基于多个极大值点构建星座图,依据星座图内两点的时间偏移和各自的频率强度生成此时间点上的哈希值,最终通过统计相同时间偏移的哈希值的个数完成目标的识别。

特征模型和星座图的构建相对复杂,不能有效的、完整的表征音频信号特征的变化,无法将特征的变化过程和趋势融入到特征值的生成,即形成的特征模板不能完整、充分表征音频信号。

因此,现有技术还有待于改进和发展。

发明内容

鉴于上述现有技术的不足,本发明的目的在于提供一种基于经验模态分解的音频识别方法及系统,旨在解决现有的识别方法无法完整、充分表征音频信号的问题。

本发明的技术方案如下:

一种基于经验模态分解的音频识别方法,其中,包括步骤:

A、输入原始音频信号,对所述原始音频信号进行采样,然后依次进行去噪预处理、加汉明窗以及傅氏变换处理得到频谱数据,再依次连接每帧的频谱数据,获得声谱图;

B、获得所述声谱图各频率段的能量最大值所在点,并依次连接各频率段的能量最大值所在点生成时间-频率曲线;

C、将所述生成的时间-频率曲线进行经验模态分解,获得多个本征模函数;

D、通过获得的多个本征模函数结合相应的频率段以及时间帧,生成用于表征原始音频信号的多个特征值,并输出。

优选的,所述步骤D具体包括:

D1、对每一个本征模函数等间隔取样,获得一组相应的取样序列;

D2、在所述取样序列后追加所处的频率段序号;

D3、对追加后的取样序列进行处理获得一个哈希值;

D4、通过N组本征模函数获得N个哈希值,共同组成一组特征值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳创维数字技术有限公司;深圳市创维软件有限公司,未经深圳创维数字技术有限公司;深圳市创维软件有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610103443.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top