[发明专利]一种视频流异常事件的检测方法及装置有效

专利信息
申请号: 201610074818.7 申请日: 2016-02-02
公开(公告)号: CN105608446B 公开(公告)日: 2019-02-12
发明(设计)人: 李楠楠;李革;徐旦 申请(专利权)人: 北京大学深圳研究生院
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 深圳鼎合诚知识产权代理有限公司 44281 代理人: 郭燕;彭家恩
地址: 518055 广东省*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 视频 异常 事件 检测 方法 装置
【说明书】:

本申请提供的视频流异常事件的检测方法及装置,将自动编码机堆叠起来构建深度神经网络框架,通过无监督的方式学习外形和运动信息的深度表述特征,设计单分类支持向量机作为正常与异常事件的分类器。为了更好地利用外形和运动信息的互补性,使用了两层信息融合方式来提高分类器的分类能力:前期的特征融合和后期的分类结果融合,两次的融合技术来更好利用外形和运动信息之间的互补性,提高了异常事件检测和定位的准确率。

技术领域

发明涉及图像处理技术领域,一种视频流异常事件的检测方法及装置。

背景技术

在视频流中自动检测异常事件是智能视频监控的一个基本研究问题,近年来在工业界和学术界都引起了极大的关注。视频异常事件检测同时也和计算机视觉领域其他的问题相关联,比如:显著性分析,兴趣区域预测等。处理这类问题的方法通常是通过正常行为模式学习一个行为模型,把与此模型显著背离的模式检测为异常行为。以前学者的研究工作大体上可以划分为两类:基于场景中独立目标轨迹分析和基于空间或者时间行为模式构建。现有技术中一种是采用具有相似运动模式且空间上靠近的轨迹被识别出来且用于异常事件检测;另一种是使用多层次光流直方图作为特征描述子,构建一个稀疏词典模型来描述正常行为模式,把特征重构误差作为异常事件检测的标准。但是,这类方法有一个共同的特点:从低层次的外形和动作描述中,人工提取出一些特征用于模型构建。但是这些人工特征隐含了对描述对象的先验知识。然而,在复杂的视频监控场景下,这些先验知识很难获得,因而人工提取特征具有很大的局限性,因此,现有技术的视频流检测中,不仅检测难度大,并且检测的准确性也受到制约,导致检测不准。

发明内容

本申请提供一种视频流异常事件的检测方法及装置,可以提高异常事件检测和定位的准确率。

根据第一方面,一种实施例中提供一种视频流异常事件的检测方法,包括:将训练样本集输入至深度学习神经网络,学习得到所述深度学习神经网络的模型参数,得到训练后的深度学习神经网络;其中,所述深度学习神经网络包括:堆叠在一起的多个自动编码器机,所述训练样本集为多个训练样本的集合,所述训练样本提取自训练图像;根据所述训练样本,分别学习出所述训练样本的外形信息特征参数、运动信息特征参数以及所述外形信息和所述运动信息的联合特征参数;采用支持向量机学习方法,分别对所述训练图像的外形信息特征参数、运动信息特征参数以及所述外形信息和所述运动信息的联合特征参数进行学习,对应构建出三个单分类支持向量机模型;将待测的视频流图像预先分成若干个预设大小的待测图像块,将所述待测图像块输入至所述训练后的深度学习神经网络,分别学习出所述待测图像块的外形信息特征参数、运动信息特征参数以及所述外形信息和所述运动信息的联合特征参数;将所述待测图像块的外形信息特征参数、运动信息特征参数以及所述外形信息和所述运动信息的联合特征参数分别输入至所述三个单分类支持向量机模型,对应计算得到所述图像块的三类异常信息的得分;将所述三类异常信息的得分做加权求和,计算得到所述图像块的异常事件得分;判断所述异常事件得分是否大于阈值,若是,则判定所述图像块为异常事件。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学深圳研究生院,未经北京大学深圳研究生院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610074818.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top