[发明专利]一种位姿不确定度评定方法在审
申请号: | 201510965329.6 | 申请日: | 2015-12-21 |
公开(公告)号: | CN106897473A | 公开(公告)日: | 2017-06-27 |
发明(设计)人: | 杜福洲;王美清;陈哲涵 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06F17/50 | 分类号: | G06F17/50 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 不确定 评定 方法 | ||
技术领域
本发明涉及一种针对大部件装配过程的部件位姿不确定度评定方法。
背景技术
在航空、航天、船舶等复杂产品制造领域,为完成产品装配并保证质量,需要对飞机机身、卫星舱段、船体分段等大尺度部件进行位姿精确调整;通过测量大尺度部件结构上的特征点坐标并拟合得到部件实测位姿,是实现大尺度部件位姿调整的前提。传统的大部件对接装配过程中,通常在部件结构上设置几个关键特征点,对这些特征点进行测量,通过比较它们之间的相对位置确定部件姿态的偏移形式和调整方向。以飞机机身与机翼对接装配为例,在机身和机翼上分别设置有多个水平测量点,在对接之间,采用经纬仪测量各水平测量点的高度,基于它们之间的高度差计算机翼的上反角、安装角等参数是否满足要求,并确定机身与机翼当前位姿,进而通过手动调整工装将机身与机翼调至水平,最终实现对接。显然,上述过程不仅效率低下,而且准确度难以保证,通常需要多次重复调整,才能保证对接质量满足产品要求。随着数字化设计、制造和装配技术的发展,复杂产品大部件装配也朝着数字化的方向发展。
国外先进数字化装配技术的一个主要特征就是,在装配阶段越来越多地采用数字化测量技术,以获取特征点在三维空间的坐标,进而基于这些特征点坐标数据求解大尺度部件实测位姿。基于数字化测量数据求解部件位姿,不仅具有高效率高精度的特点,而且便于与自动化装配系统进行集成,是复杂产品装配技术发展的趋势。在国外,波音、空客等公司已广泛采用基于数字化测量的自动装配技术,以提高装配质量,缩短装配周期(于勇,陶剑,范玉青,航空制造技术,2009年14期);国内航空航天制造企业也逐步引进类似技术,在产品研制过程中展开应用探索(雷源忠,机械工程学报,2009年第5期)。
不确定度是一个与测量结果相关联的、表征被测量之合理赋值的分散程度的参量。任何测量结果均存在一定的不确定性,表现为采用相同手段进行多次重复测量的测量结果各不相同,测量结果只有在与相应的测量不确定度同时出现时,才具有可信性和完整性。由于测量不确定度的存在,使得单次测量结果无法完全准确地反映被测量对象的实际状态,即存在测量误差;与零件的制造误差、部件的装配误差一样,测量误差同样对装配协调性产生影响。因此,需要对位姿的测量不确定度进行研究,为位姿数据的合理应用提供支持。
目前,尚未有针对位姿不确定度的相关研究成果;本发明研究并实现了一种位姿不确定 度评定方法。
发明内容
本发明的目的是克服现有技术的不足,提供一种位姿不确定度评定方法。
位姿不确定度评定方法包括如下步骤:
1)给出位姿不确定度的定义、几何表示、代数表示以及其物理意义;
2)依据计算位姿的解析算法建立位姿不确定度与测量目标点位置不确定度间的解析关系,确定位姿不确定度的解析算法;
3)分析位姿不确定度来源,将其分为目标点测量不确定度和目标点实际位置波动不确定度两大类;
4)针对位姿测量和不确定度评定需求,确定测量系统选型方案与采样策略,采集目标点测量数据样本;
5)采用主成分分析法分析目标点测量数据样本,分离出目标点位置波动不确定度与目标点测量不确定度;
6)依据位姿不确定度的解析算法,利用目标点位置波动不确定度计算出位姿不确定度。
所述的位姿不确定度的几何表示与代数表示:
1)几何表示:在几何形式上,位姿反映了装配基准局部坐标系原点在空间全局坐标系中的位置,以及局部坐标系各轴绕全局坐标系各轴的旋转角度,位姿的不确定性则表现为局部坐标系原点在空间全局坐标系中位置的不确定性,以及局部坐标系各轴指向的不确定性,而且这二者之间并不是完全独立的。位姿所描述的对象是具有几何边界的实体,在三维空间中,其位姿不确定度最终表现为该实体的接口几何特征在某个范围内随机存在,该范围存在一个最大边界和最小边界,构成了位姿所描述的实体的几何特征的最小包络范围。
2)代数表示:在代数形式上,位姿是由局部坐标系绕全局坐标系各坐标轴的旋转角度以及局部坐标系原点相对全局坐标系原点的平移量所构成的六维矢量,因此,位姿不确定度的数学形式可以采用六个维度变量的协方差矩阵表示为式(1):
所述的位姿不确定度的解析算法:
1)首先,将位姿矩阵与目标点坐标之间的关系表示为函数g(·),如式(2)所示:
2)使用位姿矩阵的六维参数代替其位姿矩阵,将式(2)转化为式(3):
其中,h=(α,β,γ,dx,dy,dz)T(3)
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510965329.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种用于海水养殖中的UV灯
- 下一篇:一种万向旋转杯形射灯