[发明专利]基于主成分分析卷积神经网络的车标自动识别方法有效
| 申请号: | 201510902942.3 | 申请日: | 2015-12-09 |
| 公开(公告)号: | CN105512684B | 公开(公告)日: | 2018-08-28 |
| 发明(设计)人: | 狄明珠;韩晶;方亚隽 | 申请(专利权)人: | 江苏航天大为科技股份有限公司 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/32;G06N3/04 |
| 代理公司: | 北京德崇智捷知识产权代理有限公司 11467 | 代理人: | 王金双 |
| 地址: | 214000 江苏省*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 成分 分析 卷积 神经网络 自动识别 方法 | ||
一种基于主成分分析卷积神经网络的车标自动识别方法,包括各类车标分类理想输出特征向量取得的步骤及车标识别步骤,其中,表示车标分类理想输出特征向量,k表示车标种类数,所述各类车标分类理想输出特征向量是用
技术领域
交通图像车辆特征检测的技术领域,尤其涉及一种基于主成分分析卷积神经网络的车标自动识别方法。
背景技术
车标识别作为交通图像车辆特征检测技术领域中的重要组成部分,可以更准确地获取车辆信息,已在车辆行踪及违法车辆的自动记录中得到了越来越广泛的应用。目前车标识别的现有技术包括利用特征不变矩距离分类法、基于SIFT特征识别法等,其在识别率和识别速度上都有待提高。
卷积神经网络(CNN)是人工神经网络的一种,主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量,在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。基于卷积神经网络车标识别技术,明显有别于其他基于神经网络的分类器,通过结构重组和减少权值将特征提取功能融合进多层感知器使识别车标更有效,运行速度更快。
发明内容
本发明提供一种基于主成分分析卷积神经网络的车标自动识别方法,本发明用相对较小的计算复杂度,极大地提高车标图像识别效果,使得车标识别率能达到85%以上。
本发明采用如下技术方案:
一种基于主成分分析卷积神经网络的车标自动识别方法,其特征在于,包括各类车标分类理想输出特征向量Tk取得的步骤及车标识别步骤,其中,Tk表示车标分类理想输出特征向量,k表示车标种类数,
所述各类车标分类理想输出特征向量Tk取得的步骤包括:
搜集作为样本图像的各类车标图像N份,分别对各类车标图像进行定位,得到大小为44×44像素的各类车标区域精确定位灰度图像N份,再通过训练卷积神经网络,确定并得到各类车标分类理想输出特征向量T,所述卷积神经网络的训练方法如下:
步骤101卷积神经网络训练参数设定
分别取作为样本图像的各类车标的44×44像素的车标区域精确定位灰度图像N份,卷积核设为5×5,采样层采样范围2×2,
步骤102对样本图像进行灰度归一化处理,统一各个样本的图像亮度和对比度,得到归一化样本图像且归一化样本图像的像素值为G(i,j,n),G(i,j,n)为第n个样本的归一化图像中的第i行第j列像素值,i、j=均为正整数,
步骤103采用主成分分析滤波器为卷积核,所述卷积核是将64列向量分别排列为5×5方阵后得到的64个5×5卷积核,所述64个5×5卷积核采用如下方法得到:
步骤103-1:求得矩阵XN×1936的协方差矩阵C1936×1936,所述矩阵XN×1936是分别将N个归一化样本图像的每一个相同位置上的像素值G(i,j,n)拉成一个列向量,组成矩阵XN×1936,则矩阵X共有N行、44×44=1936列;
步骤103-2:求协方差矩阵C1936×1936的特征值和特征向量,并将特征向量归一化为单位向量,
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏航天大为科技股份有限公司,未经江苏航天大为科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510902942.3/2.html,转载请声明来源钻瓜专利网。





