[发明专利]一种稀土离子掺杂的K3LuCl6微晶玻璃及其制备方法在审
| 申请号: | 201510852475.8 | 申请日: | 2015-11-27 |
| 公开(公告)号: | CN105293921A | 公开(公告)日: | 2016-02-03 |
| 发明(设计)人: | 张为欢;张约品;欧阳绍业;张志雄;王倩 | 申请(专利权)人: | 宁波大学 |
| 主分类号: | C03C10/16 | 分类号: | C03C10/16;C03C4/12 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 315211 浙*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 稀土 离子 掺杂 sub lucl 玻璃 及其 制备 方法 | ||
技术领域
本发明涉及一种稀土离子掺杂的微晶玻璃,尤其是涉及一种用作上转换发光材料的稀土离子掺杂的K3LuCl6微晶玻璃及其制备方法。
背景技术
稀土离子的上转换发光是指当采用波长较长的激发光照射掺杂稀土离子的样品时,发射出波长小于激发光波长的光的现象。利用稀土离子的上转换特性,可获得廉价的、可在室温下工作的和连续输出紫蓝绿光光纤激光器。紫蓝绿上转换激光可应用于彩色显示器、数据储存、信息技术、激光印刷以及医疗等各个领域。要提高上转换发光的效率需降低基质材料的声子能量,这主要是因为较低的声子能量可降低无辐射驰豫几率的发生,提高稀土离子中间亚稳态能级的荧光寿命,可有效的提高上转换发光的效率。K3LuCl6晶体具有比氟化物更低的声子能量,更适合作为稀土掺杂的上转换发光基质,稀土离子掺杂的K3LuCl6晶体具有比稀土离子掺杂的氟化物晶体更高的上转换效率,但K3LuCl6晶体易吸湿、需要特殊处理和储存、难以制备、化学稳定性和机械强度较差等缺点影响了其上转换发光材料的实际应用。
透明微晶玻璃是一种兼有晶体和玻璃优点的新型光电子材料。目前氯化物透明微晶玻璃主要用作闪烁发光和上转换发光材料,如公开号为CN103382089,名称为“含Cs3LaCl6纳米晶的透明硫卤玻璃陶瓷及其制备”的发明专利申请公开了掺杂Nd3+或Er3+离子,以Cs3LaCl6为微晶相、玻璃相为硫化物的微晶玻璃,但硫化物的物化性能比氧化物要差,且在可见光短波长处不透,影响了上转换发光输出;如公开号为CN103951245,名称为“稀土离子掺杂的Cs2LiLuCl6微晶玻璃及其制备方法”的发明专利申请也公开了一种微晶相Cs2LiLuCl6、玻璃相为P2O5与GeO2为主的微晶玻璃,掺杂的稀土离子为Ce3+、Eu3+、Tb3+、Pr3+和Nd3+中的一种,采用熔体急冷法和后续热处理制备,具有较好的闪烁性能,用作闪烁发光材料。但是目前还没有三价稀土离子Yb3+、Er3+、Tm3+和Ho3+掺杂的K3LuCl6微晶玻璃用于上转换发光材料的公开报道。
发明内容
本发明所要解决的技术问题是提供一种声子能量低、无辐射跃迁几率小、上转换量子效率高、抗潮解、机械性能好、上转换发光很强的稀土离子掺杂K3LuCl6微晶玻璃及其制备方法。
本发明解决上述技术问题所采用的技术方案为:一种稀土离子掺杂的K3LuCl6微晶玻璃,其摩尔百分比组成如下:SiO287~94mol%、K3LuCl65.6~10mol%、LnCl30.4~3mol%,其中LnCl3为YbCl3、ErCl3、TmCl3和HoCl3中的至少一种。
该微晶玻璃摩尔百分比组成为:SiO290mol%、K3LuCl68mol%、ErCl30.5mol%、YbCl31.5mol%。
该微晶玻璃摩尔百分比组成为:SiO288.5mol%、K3LuCl69mol%、TmCl30.5mol%、YbCl32mol%。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波大学,未经宁波大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510852475.8/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





