[发明专利]人脸识别模型训练方法和装置有效

专利信息
申请号: 201510830359.6 申请日: 2015-11-25
公开(公告)号: CN105426857B 公开(公告)日: 2019-04-12
发明(设计)人: 张涛;陈志军;龙飞 申请(专利权)人: 小米科技有限责任公司
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 北京三高永信知识产权代理有限责任公司 11138 代理人: 滕一斌
地址: 100085 北京市海淀区清*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 识别 模型 训练 方法 装置
【说明书】:

本公开是关于一种人脸识别模型训练方法和装置,该方法包括:获取原始人脸识别模型,所述原始人脸识别模型中包括N层特征系数;获取第二训练样本集,并确定第二训练样本集中的各样本人脸图像的第一原始分类标号;采用原始人脸识别模型的前M层特征系数对第二训练样本集中的各样本人脸图像进行编码,获得编码后的第二训练样本集;其中,编码后的第二训练样本集中包括与各样本人脸图像分别对应的各编码后特征向量以及与各编码后特征向量分别对应的第一原始分类标号;根据编码后的第二训练样本集对原始人脸识别模型的后N‑M层特征系数进行训练,获得训练后的后N‑M层特征系数,从而获得更加优化的人脸识别模型。

技术领域

本公开涉及通信技术领域,尤其涉及一种人脸识别模型训练方法和装置。

背景技术

人脸识别是指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。在人脸识别的过程,主要包括人脸图像的匹配和识别过程,就是将提取到的待识别的人脸特征与已得到的存储在数据库中的人脸特征模板进行匹配,根据相似程度对人脸图像的身份信息进行判断。因此,能够提取到准确而丰富的人脸特征对于人脸识别的结果具有重要影响。

目前,大多的人脸特征提取方法为人工特征的提取,比如:尺度不变特征转换(Scale-invariant feature transform,SIFT)特征、局部二值模式(Local BinaryPatterns,LBP)特征、梯度直方图(Histogram of Oriented Gradient,HoG)特征等。基于上述人工特征提取方法提取的人脸特征,进行分类器的学习训练,从而得到各种人脸识别模型,采用这些人脸识别模型能够进行人脸图像的识别处理。

发明内容

本公开提供一种人脸识别模型训练方法和装置,用以实现对人脸识别模型的优化。

根据本公开实施例的第一方面,提供一种人脸识别模型训练方法,包括:

获取原始人脸识别模型,所述原始人脸识别模型是使用第一训练样本集对卷积神经网络进行训练后得到的,所述原始人脸识别模型中包括N层特征系数,N≥2;

获取第二训练样本集,并确定第二训练样本集中的各样本人脸图像对应的第一原始分类标号,所述各样本人脸图像是存储于云端人脸相册中的人脸图像;

采用所述原始人脸识别模型的前M层特征系数对所述第二训练样本集中的各样本人脸图像进行编码,获得编码后的第二训练样本集;其中,所述编码后的第二训练样本集中包括与各样本人脸图像分别对应的各编码后特征向量以及与各编码后特征向量分别对应的第一原始分类标号,N≥M≥1;

根据所述编码后的第二训练样本集对所述原始人脸识别模型的后N-M层特征系数进行训练,获得训练后的后N-M层特征系数。

通过上述方案,为了对使用第一训练样本集对卷积神经网络进行训练后得到的包括N层特征系数的原始人脸识别模型进行优化,首先获得不同于传统第一训练样本集的第二训练样本集。其中,构成第一训练样本集中的各样本人脸图像是通过随机在网络上搜索得到的各人脸图像,样本噪声较大;而第二训练样本集中的各样本人脸图像是存储于云端人脸相册中的人脸图像,样本比较干净。由于第二训练样本集中各样本人脸图像涉及到用户隐私,为了保护用户隐私的同时采用第二训练样本集对原始人脸识别模型进行优化训练,首先为每个样本人脸图像进行标记即为每个样本人脸图像分配一个分类标号,进而采用原始人脸识别模型的前M层特征系数对第二训练样本集中的各样本人脸图像进行编码,即提取各样本人脸图像的前M层特征系数,从而经编码和分类标号标记的各样本人脸图像不会泄露对应的用户隐私。最后,以各编码后特征向量即经M层特征系数编码的各样本人脸图像以及与各编码后特征向量分别对应的分类标号为输入,对原始人脸识别模型的后N-M层特征系数进行训练,获得训练后的后N-M层特征系数,从而获得由原M层特征系数和训练后的后N-M层特征系数构成的优化后的人脸识别模型。由于优化后的人脸识别模型是基于干净的训练样本训练获得的,更加准确、可靠。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于小米科技有限责任公司,未经小米科技有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510830359.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top