[发明专利]多重搜索粒子概率假设密度滤波的多目标跟踪方法有效
| 申请号: | 201510791334.X | 申请日: | 2015-11-17 |
| 公开(公告)号: | CN105353353B | 公开(公告)日: | 2017-08-18 |
| 发明(设计)人: | 谭顺成;王国宏;吴巍;于洪波 | 申请(专利权)人: | 中国人民解放军海军航空工程学院 |
| 主分类号: | G01S7/02 | 分类号: | G01S7/02;G01S13/56;G01S13/66 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 264001 山东省*** | 国省代码: | 山东;37 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 多重 搜索 粒子 概率 假设 密度 滤波 多目标 跟踪 方法 | ||
技术领域
本发明涉及一种雷达数据处理方法,特别是涉及一种低检测概率情况下雷达对多目标的跟踪方法。
背景技术
粒子概率假设密度滤波(Particle probability hypothesis density filter,PPHDF)是一种密集杂波环境下对多目标进行跟踪的有效方法。PPHDF通过将量测和目标状态建模为随机集,可以非常方便的从个数时变的量测中估计出个数时变且未知的目标状态,即可同时对目标个数和目标状态进行估计;同时,PPHDF可以避免目标和量测之间的关联问题,极大的降低了多目标跟踪算法的复杂性和计算量。因此,PPHDF在多目标跟踪领域得到了广泛的关注和研究。该方法主要通过以下步骤实现:
(1)初始化,得到初始粒子集;
(2)对已存在的粒子集进行一步预测得到预测粒子集,并生成用于搜索新目标的搜索粒子集,将预测粒子集和搜索粒子集合成新的预测粒子集;
(3)利用新量测对预测粒子集粒子权重进行更新;
(4)对权重更新后的粒子集进行重采样,并得到目标个数和各目标状态估计。
基于PPHDF的多目标跟踪方法存在一个明显的缺陷,即当目标出现漏检时,重采样会造成粒子多样性的迅速退化,进而造成目标丢失的现象,因此该算法难以适应目标检测概率较低时的多目标跟踪。
发明内容
本发明的目的是提出一种多重搜索粒子概率假设密度滤波(MS-PPHDF)的多目标跟踪方法,解决一般的PPHDF方法在目标检测概率较低的情况下容易出现目标丢失的问题。
本发明提出的MS-PPHDF方法的技术方案包括以下步骤:
步骤1:变量初始化
K是雷达关机时刻;
T是雷达扫描周期;
L0为代表1个目标的粒子数;
D0为目标出现的初始分布;
Jk为搜索新目标的粒子数;
Sk表示搜索1个消失目标的粒子数;
Lk为k时刻滤波器采用的粒子总数;
γk为平均目标出现概率;
PD为目标检测概率;
λk为平均每帧的杂波个数;
Fk为状态转移矩阵;
Gk为过程噪声分布矩阵;
Qk为过程噪声协方差;
Rk为量测噪声协方差;
步骤2:令k=0,初始化粒子集
对任意p∈{1,2,…,L0},从初始分布D0中采样粒子并赋予该粒子权重得到初始粒子集其中表示粒子代表的目标状态,包含了目标的位置和速度信息;
步骤3:令k=k+1,获得k时刻的雷达量测
将雷达接收到的信号进行A/D变换,得到k时刻的雷达量测集送雷达数据处理计算机,其中表示k时刻雷达得到的第q个量测,包含了目标的距离量测多普勒速度量测以及方位量测等信息,而Mk则表示k时刻雷达得到的量测个数;
步骤4:预测
(1)若k≤2,令Ik=0,直接转(4),否则定义集合
其中,表示k-2时刻存在而k-1时刻消失的第n个目标的状态,Ndis,k-1表示消失的目标数;
(2)若令Ik=0,直接转(4),否则令Ik=Ndis,k-1Sk,对任意根据状态转移方程
进行一步预测,其中
(3)对任意n∈{1,2,…,Ndis,k-1}和任意p∈{Lk-1+(n-1)Sk+1,…,Lk-1+nSk},根据
采样粒子并赋予该粒子权重其中
为过程噪声分布矩阵,vk为过程噪声,其噪声协方差为Qk;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军海军航空工程学院,未经中国人民解放军海军航空工程学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510791334.X/2.html,转载请声明来源钻瓜专利网。





