[发明专利]基于BP神经网络与MOBFOA算法的铝电解工艺参数优化方法有效

专利信息
申请号: 201510753959.7 申请日: 2015-11-06
公开(公告)号: CN105321000B 公开(公告)日: 2018-10-09
发明(设计)人: 易军;黄迪;李太福;何海波;周伟;张元涛;陈实;刘兴华 申请(专利权)人: 重庆科技学院
主分类号: G06Q10/04 分类号: G06Q10/04;G06N3/08
代理公司: 重庆为信知识产权代理事务所(普通合伙) 50216 代理人: 陈千
地址: 400023 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 bp 神经网络 mobfoa 算法 电解 工艺 参数 优化 方法
【说明书】:

发明公开了一种基于BP神经网络与MOBFOA算法的铝电解工艺参数优化方法,包括以下几个步骤:一:统计对电流效率、吨铝能耗以及全氟化物排放量影响大的参数作为决策变量X;二:利用BP神经网络建立铝电解生产过程模型;三:运用MOBFOA算法对决策变量在其取值范围内进行优化;四:按照最优决策变量进行现场控制。有益效果:利用非线性映射能力强的BP神经网络建立铝电解生产过程模型;优化方法指导菌群跳出局部最优,可快速获得最佳的生产过程参数,达到了高效、降耗、减排的目的。

技术领域

本发明涉及铝电解工业生产领域,具体的说是一种基于BP神经网络与MOBFOA算法的铝电解工艺参数优化方法。

背景技术

铝电解是一个复杂的工业生产过程,在生产过程中,会产生大量温室气体,环境污染严重。因此,在保证铝电解槽平稳生产的前提下,如何提高电流效率、降低能耗、降低污染气体排放量,以实现高效、节能、减排已成为铝电解企业的生产目标。但是,铝电解槽内部复杂的物料化学变化以外部多种不确定作业因素导致槽内参数较多,参数间呈现出非线性、强耦合性等特点,且诸如极距、保温材料厚度等参数难以实时测量、调整,给铝电解生产过程控制优化带来一定难度。

发明内容

针对上述问题,本发明提供了一种基于BP神经网络与MOBFOA算法的铝电解工艺参数优化方法,快速的得到优化数据,并将优化后的数据运用到实际铝电解生产中,来提高电流效率,降低吨铝能耗和全氟化物排放量。

为达到上述目的,本发明采用的具体技术方案如下:

一种基于BP神经网络与MOBFOA算法的铝电解工艺参数优化方法,包括以下步骤:

S1:选择对电流效率、吨铝能耗以及全氟化物排放量有影响的控制参数构成决策变量X=[x1,x2,…,xM],M为所选参数的个数;

S2:选定铝电解工业现场,采集N组决策变量X1,X2,…,XN及其对应的电流效率y1,y2,…,yN;对应的吨铝能耗z1,z2,…,zN和对应的全氟化物排放量w1,w2,…,wN作为数据样本,以每一个决策变量Xi作为输入,分别以对应的电流效率yi、吨铝能耗zi以及全氟化物排放量wi作为输出,运用BP神经网络对样本进行训练、检验,建立铝电解槽生产过程模型;

S3:利用多目标细菌觅食优化算法,即MOBFOA算法,对步骤S2所得的三个生产过程模型进行优化,得到一组最优决策变量Xbest及其对应的电流效率ybest、吨铝能耗zbest以及全氟化物排放量wbest,优化时,通过计算非劣解的拥挤距离并根据拥挤距离对外部档案进行更新和实现自适应步长调整,以保证在种群多样性前提下快速收敛和引导菌群快速移动并避免陷入局部最优;

S4:按照步骤S3所得的最优决策变量Xbest中的控制参数来控制步骤S2中所选定的铝电解工业现场,使其达到节能、降耗和减排的目的。

进一步描述,结合实际生产情况,步骤S1中选定了8个参数构成决策变量,分别为系列电流x1、下料次数x2、分子比x3、出铝量x4、铝水平x5、电解质水平x6、槽温x7、槽电压x8

为了满足建模需求,步骤S2中的BP神经网络由输入层、隐藏层和输出层构成;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆科技学院,未经重庆科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510753959.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top