[发明专利]用于乐甫波液体多参数传感的人工神经网络结构和方法在审
申请号: | 201510664995.6 | 申请日: | 2015-10-15 |
公开(公告)号: | CN105223269A | 公开(公告)日: | 2016-01-06 |
发明(设计)人: | 陈智军;孙聪;韩超;陈涛;付俊 | 申请(专利权)人: | 南京航空航天大学 |
主分类号: | G01N29/02 | 分类号: | G01N29/02;G01N29/44;G06N3/02 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 朱小兵 |
地址: | 210016 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 用于 乐甫波 液体 参数 传感 人工 神经网络 结构 方法 | ||
技术领域
本发明涉及一种用于乐甫波液体多参数传感的人工神经网络结构和方法,属于传感器数据融合领域。
背景技术
液体传感器主要用于对液体本身特征参数的检测,通常包括密度、粘度两种机械参数和介电常数、电导率两种电学参数的测量(在某些特殊的情况下,还需要测量液体的体积弹性模量)。液体检测不仅关注液体某单个特定的特征参数,还希望能够并行检测液体的多个特征参数。
声波传感器是一种新型谐振式传感器。声波传感器以压电材料作为敏感器件,利用压电效应,通过叉指换能器在压电基片上激发出弹性波,主要根据声波的传播速度和传播衰减随被测对象变化来实现检测功能。通常来说,声波传感器可分为声表面波传感器、声板波传感器、乐甫波传感器三种类型。声表面波器件的基本结构是半无限压电基片和在基片上沉积的输入、输出叉指换能器;声板波是在厚度有限的薄板上传播的声波;乐甫波器件在声表面波器件的结构上增加了一层波导层,且只在水平剪切方向上存在着质点振动,叉指换能器则沉积在基底与波导层之间。其中,乐甫波传感器最适于液相检测。并且,由于乐甫波器件只存在水平剪切方向的振动位移,与沿传播方向存在振动位移的声表面波和声板波器件相比,液体的体积弹性模量不影响乐甫波的传播特性,在测量液体密度、粘度、介电常数、电导率时,消除了液体体积弹性模量对测量结果的耦合影响。
对于界面电学形式为金属化的乐甫波,液体介电常数、电导率不影响乐甫波的传播速度和传播衰减;对于界面电学形式为自由化的乐甫波,液体密度、粘度、介电常数、电导率同时影响乐甫波的传播速度和传播衰减。因此,可通过不同界面电学形式的乐甫波来分离检测液体的机械参数和电学参数。虽然在一定程度上,可以近似简化的认为乐甫波传播速度主要受液体密度、介电常数影响,乐甫波传播衰减主要受液体粘度、电导率影响。但是实际上,液体的密度、粘度两个机械参数对金属化电学形式乐甫波传播速度、传播衰减的影响,介电常数、电导率两个电学参数对自由化电学形式乐甫波传播速度、传播衰减的影响都是交叉耦合在一起的,即乐甫波传播速度与液体特征参数之间具有复杂的非线性关系。因此,如何获得乐甫波传播参数与液体特征参数之间较为精确的定量关系,是乐甫波用于液体多参数传感时需要解决的一个关键问题。
发明内容
本发明所解决的技术问题是提供一种用于乐甫波液体多参数传感的人工神经网络结构和方法,获得乐甫波传播参数与液体特征参数之间较为精确的定量关系,从而真正实现乐甫波液体多参数传感功能的传感器数据融合。
本发明为解决上述技术问题采用以下技术方案:
一种用于乐甫波液体多参数传感的人工神经网络结构,所述人工神经网络结构采用两级结构,第一级结构包括第一输入层、第一隐含层和第一输出层,第二级结构包括第二输入层、第二隐含层和第二输出层;第一输入层、第一隐含层和第一输出层依次连接,第一输出层接入第二输入层,第二输入层、第二隐含层和第二输出层依次连接;所述人工神经网络结构的输入参数为环境温度和乐甫波传播参数,输出参数为液体特征参数。
进一步的,本发明的用于乐甫波液体多参数传感的人工神经网络结构,所述乐甫波传播参数包括金属化电学形式的乐甫波传播速度和传播衰减、自由化电学形式的乐甫波传播速度和传播衰减,所述液体特征参数包括液体密度、液体粘度、液体介电常数和液体电导率
进一步的,本发明的用于乐甫波液体多参数传感的人工神经网络结构,所述第一输入层的输入参数包括环境温度、金属化电学形式的乐甫波传播速度和传播衰减;第一隐含层包含若干中间神经元;第一输出层的输出参数包括液体密度、液体粘度。
进一步的,本发明的用于乐甫波液体多参数传感的人工神经网络结构,所述第二输入层的输入参数包括环境温度、第一输出层的输出参数、自由化电学形式的乐甫波传播速度和传播衰减;第二隐含层包含若干中间神经元;第二输出层的输出参数包括液体介电常数、液体电导率。
进一步的,本发明的用于乐甫波液体多参数传感的人工神经网络结构,所述第一隐含层和第二隐含层的层数是可变的,中间神经元的个数是可变的。
进一步的,本发明还提供一种人工神经网络结构获取乐甫波液体传感参数的方法,具体包括以下步骤:
步骤A、给定环境温度、液体密度和液体粘度,通过乐甫波器件负载液体的理论分析模型仿真获得金属化电学形式的乐甫波传播速度和传播衰减;
步骤B、在步骤A给定的环境温度、液体密度和液体粘度的基础上,给定液体介电常数和液体电导率,通过乐甫波器件负载液体的理论分析模型仿真获得自由化电学形式的乐甫波传播速度和传播衰减;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510664995.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种密封吸附装置
- 下一篇:一种检测香兰素的印迹电化学传感器的制备方法及应用