[发明专利]一种基于Personal Rank的情绪上下文感知的音乐推荐方法有效

专利信息
申请号: 201510534549.3 申请日: 2015-08-27
公开(公告)号: CN105426382B 公开(公告)日: 2018-10-26
发明(设计)人: 邓水光;王东京;周新宇;李莹;吴健;尹建伟;吴朝晖 申请(专利权)人: 浙江大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 杭州宇信知识产权代理事务所(普通合伙) 33231 代理人: 张宇娟
地址: 310027 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 personal rank 情绪 上下文 感知 音乐 推荐 方法
【说明书】:

发明涉及一种在音乐推荐中结合用户情感状态来提高音乐推荐效果的方法,该方法主要是利用用户在微博上发布的微博数据包括普通微博和音乐分享微博,并以此来获取用户的收听记录以及对应的情绪上下文的关联数据,并利用图模型表示该关联数据;在推荐的时候考虑用户当前的情感状态以,利用Personal Rank方法在图模型上遍历,从而能够让推荐出符合用户当前偏好的音乐。

技术领域

本发明涉及情感挖掘与推荐系统领域,主要是设计一种基于Personal Rank的情绪上下文感知的音乐推荐方法。

背景技术

情感挖掘是通过一些方法获取特定用户的情感状态,直接通过医学传感器获取用户情绪的方法实现复杂,不具有普适性。另外一种比较常见的方式是通过自然语言处理的方法来分析用户产生的数据或者阅读的文本数据(包括微博、新闻、博客等)来获取用户当前的情感状态。相比于用户阅读的文本,用户所发布文本中情感信息更为丰富,而且现在移动互联网的流行及移动设备的广泛普及更加方便了这种方式获取用户数据的渠道。类似的方法在舆情分析分析等领域应用较为广泛。

随着互联网应用的发展,推荐系统并且在工业界以及学术界越来越受到大家的关注,也取得巨大的成功。传统单一维度的推荐系统已经不能满足用户个性化的需求,而上下文相关的推荐系统不仅能够较好的帮助用户解决信息过载的问题,而且能够利用用户的上下文信息更加准确的预测用户的需求。在音乐推荐领域,情绪上下文对用户的音乐偏好的影响尤为明显。然而在基于情绪上下文的音乐推荐系统的设计中,对用户情感上下文的提取、建模以及与推荐系统的结合的策略的研究工作相对较少。

发明内容

针对传统音乐推荐系统的缺点,本发明提出了一种在音乐推荐算法中加入用户情感上下文的方法,具体包括如下内容:

一种基于Personal Rank的情绪上下文感知的音乐推荐方法,包括以下步骤:

10.基于情感词典的包含情绪上下文的音乐记录的提取;

20.包含情绪上下文的音乐记录的建模;

30.基于Personal Rank的情绪上下文感知的音乐推荐。

进一步的,步骤10包括:

101.利用已有的情感词典、同义词词典、微博词汇构建一个全面情感词典,所述全面情感词典中的情绪分为7类,分别是快乐、喜好、哀伤、惊、恐惧、愤怒、憎恶;

102.把用户的微博分为两类,分别是音乐分享微博和普通微博,其中音乐分享微博包含音乐的基本信息,普通微博为用户分享所见、所闻、所感的文本;

103.采用分词系统将所述普通微博转化为“中文词-频率”的键值对,其中的情感词汇的出现频率,将微博文本表示为情感向量;

104.从所述音乐分享微博中提取音乐和对应的分享时间,得到用户的“音乐-时间”记录;

105.把用户分享音乐m的时间点t之前一段时间内的所有微博的情感向量相加,并归一化,作为用户分享/收听音乐m的情绪上下文向量,最终得到“用户-音乐-情绪上下文向量”的关联数据。

进一步的,步骤20包括:

201.根据“用户-音乐-情绪上下文向量”的关联数据构建情绪感知二分图,所述情绪感知二分图中的节点包括三种:用户节点、音乐节点、情绪节点,不同节点之间的边表示“用户-音乐-情绪上下文向量”的关联数据;

202.利用加权邻接矩阵M表示所述情绪感知二分图,M中的元素mij表示从节点i到节点j的边的权重,如果该边不存在,则其权值为0;

203.对M进行归一化,得到概率转移矩阵P,计算公式如下:

其中:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510534549.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top