[发明专利]基于模型预测控制的风电并网实时调度方法及系统有效
申请号: | 201510441034.9 | 申请日: | 2015-07-24 |
公开(公告)号: | CN105048499B | 公开(公告)日: | 2017-11-03 |
发明(设计)人: | 叶林;李智;任成;赵永宁 | 申请(专利权)人: | 中国农业大学 |
主分类号: | H02J3/38 | 分类号: | H02J3/38 |
代理公司: | 北京路浩知识产权代理有限公司11002 | 代理人: | 李相雨,李官 |
地址: | 100193 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 模型 预测 控制 并网 实时 调度 方法 装置 | ||
技术领域
本发明涉及电力系统运行与控制技术领域,具体涉及一种基于模型预测控制的风电并网实时调度方法及系统。
背景技术
新能源发电在不可再生资源日益枯竭的状况下发展迅速,其中风能的发展更为迅速,近几年风电场装机容量在逐渐增大,如何提高风电场有功功率预测的准确度和并网的稳定性以满足大电网调度要求是影响风电并网普及的难题。
风能由于不确定性和间歇性阻碍了对其的利用和推广。目前的风电场功率预测,大多数是在预测算法上进行改进,其中用到了机器学习和概率分布等对风电功率进行预测,选取预测精度高的模型。但是由于预测模型的固化以及在线数据的实时变化,使得单纯使用功率预测模型进行调度的准确度较低,从而导致风电并网的稳定性较差。
发明内容
本发明的目的在于,提供一种基于模型预测控制的风电并网实时调度方法及系统,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。
为此目的,一方面,本发明提出一种基于模型预测控制的风电并网实时调度方法,包括:
计算大电网中各台风机的发电量指标;
建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
另一方面,本发明提出一种基于模型预测控制的风电并网实时调度系统,包括:
发电量指标计算单元,用于计算大电网中各台风机的发电量指标;
模型优化单元,用于建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
本发明实施例所述的基于模型预测控制的风电并网实时调度方法及系统,延续了对功率预测模型的算法改进,加上对其中误差、负荷调度的考虑,通过预测控制技术即功率预测模型的滚动优化和误差的反馈校正,使得功率预测较之现有的预测方法在精度上有所提高,相较于传统的风电并网仅利用预测模型进行调度,具有超前消除预测偏差、降低风电并网调度不确定性因素影响的优点,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。
附图说明
图1为本发明基于模型预测控制的风电并网实时调度方法一实施例的流程示意图;
图2为本发明基于模型预测控制的风电并网实时调度方法另一实施例的流程示意图;
图3为本发明基于模型预测控制的风电并网实时调度系统一实施例的方框结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本实施例公开一种基于模型预测控制的风电并网实时调度方法,包括:
S1、计算大电网中各台风机的发电量指标;
S2、建立风机功率预测模型,以及风机出力计划与所述风机功率预测模型的功率预测结果的关系,通过对所述风机功率预测模型进行滚动优化,对风机出力计划与所对应的发电量指标之间的误差进行反馈校正,使风机出力计划与所对应的发电量指标之间的误差在预设的误差范围内。
本发明实施例所述的基于模型预测控制的风电并网实时调度方法,延续了对功率预测模型的算法改进,加上对其中误差、负荷调度的考虑,通过预测控制技术即功率预测模型的滚动优化和误差的反馈校正,使得功率预测较之现有的预测方法在精度上有所提高,相较于传统的风电并网仅利用预测模型进行调度,具有超前消除预测偏差、降低风电并网调度不确定性因素影响的优点,能够提高风电并网实时调度的准确度,从而能够提升风电并网的稳定性。
可选地,在本发明基于模型预测控制的风电并网实时调度方法的实施例中,所述计算大电网中各台风机的发电量指标,包括:
获取大电网的历史负荷数据,根据所述历史负荷数据建立负荷预测模型,对未来预设时段的负荷进行预测,得到所述未来预设时段大电网的负荷预测值,并确定出分配给风电场发电机组的发电量指标;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国农业大学,未经中国农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510441034.9/2.html,转载请声明来源钻瓜专利网。