[发明专利]基于模拟人类视觉的机器视觉构建方法有效

专利信息
申请号: 201510377168.9 申请日: 2015-06-25
公开(公告)号: CN104933435B 公开(公告)日: 2018-08-28
发明(设计)人: 潘晨 申请(专利权)人: 中国计量学院
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 310018 浙江省杭*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 模拟 人类 视觉 机器 构建 方法
【说明书】:

发明公开了一种基于模拟人类视觉的机器视觉构建方法,包括以下各步骤:1)通过频域法对目标图像作显著性检测,得到相应的像素显著度图;2)对所述的像素显著度图中的显著点,依据显著度排序;3)选取前N个显著点作为注视点,以每个注视点为中心,形成信息熵最大的局部区域,这些局部区域组成注视区域;4)对所述的注视区域内部像素进行随机采样,并对注视区域外部进行等量的像素随机采样;5)利用极限学习机训练策略,通过该模型分类所述目标图像的全部像素,将被分为正样本的像素区域作为第一注视目标区。本发明根据人类视觉注视的过程,通过注视点排序和神经网络模型,来模拟人类主动视觉过程,以构建具有对目标场景快速有效注视的机器视觉。

技术领域

本发明涉及人类视觉构建技术领域,具体地讲是一种基于模拟人类视觉的机器视觉构建方法。

背景技术

随着信息技术的发展,计算机视觉已经被广泛应用于低层特征检测和描述、模式识别、人工智能推理和机器学习算法等领域。然而,传统的计算机视觉方法通常是任务驱动型,即需要限定许多条件,并根据实际任务来设计相应的算法,缺乏通用性;需要解决高维非线性特征空间、超大数据量对问题求解和实时处理等问题,使得其研究和应用面临巨大的挑战。

人类视觉系统能够在不同环境下高效、可靠地工作,其具有以下优点:具有关注机制、显著性检测和与此相关的视觉处理中的选择性和目的性;能够从低层视觉处理中利用先验知识,使数据驱动的自底向上处理与自顶向下的知识指导在视觉处理中相互协调配合;上下境信息在视觉处理的各个层次都发挥着重要作用,并且能够综合利用环境中各种模态的信息。但在人类视觉感知机理尚不完全明了的情况下,如何构造具有人类视觉特点的机器视觉仍存在较大困难,若能够构建模拟人类视觉的机器视觉系统,必然会给计算机视觉的各个实际应用领域带来重要的影响。

发明内容

有鉴于此,本发明要解决的技术问题是,提供一种能够模拟人类视觉的机器视觉构建方法,通过模拟人类主动视觉行为、对目标场景作快速有效注视,实现机器对目标场景的视觉感知。

本发明的技术解决方案是,提供以下步骤的基于模拟人类视觉的机器视觉构建方法,包括以下各步骤:

1)通过频域法对目标图像作显著性检测,得到相应的像素显著度图,所述像素显著度图与所述目标图像的像素位置信息一致;

2)对所述的像素显著度图中的显著点,依据显著度进行排序;

3)选取前N个显著点作为注视点,以每个注视点为中心,形成信息熵最大的局部区域,这些局部区域组成注视区域;

4)对所述的注视区域内部像素进行随机采样,并对注视区域外部进行等量的像素随机采样;采样得到的注视区域内部像素作为正样本,注视区域外部像素作为负样本;

5)利用极限学习机训练策略,训练得到一个二分类的前馈神经网络模型,通过该模型分类所述目标图像的全部像素,将被分为正样本的像素区域作为第一注视目标区。

采用本发明的方法,与现有技术相比,本发明具有以下优点:通过频域法进行显著性检测,能够快速形成像素显著度图;依据显著度排序像素,可粗略定位显著度高的注视区域;对该区域内部和外部同时进行少量像素采样,组成正负样本数据集训练前馈神经网络,随后借助该神经网络分类像素,能获得显著度高的、更精确的区域作为第一注视目标区;且可建立第一注视目标区的基础上,适当扩大显著度高的注视区域范围,再次经神经网络学习-分类形成相应的注视目标区,并与第一注视目标区进行比较,以判断注视目标区是否稳定。本发明根据人类视觉注视的过程,通过注视点排序和神经网络模型,来模拟人类视觉,以构建具有对目标场景快速有效注视的机器视觉。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量学院,未经中国计量学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510377168.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top