[发明专利]一种分布式电源谐波的在线检测方法及装置有效
| 申请号: | 201510310187.X | 申请日: | 2015-06-08 |
| 公开(公告)号: | CN104850757B | 公开(公告)日: | 2018-02-06 |
| 发明(设计)人: | 李加升 | 申请(专利权)人: | 湖南城市学院 |
| 主分类号: | G06F17/50 | 分类号: | G06F17/50;G06Q50/06 |
| 代理公司: | 北京超凡志成知识产权代理事务所(普通合伙)11371 | 代理人: | 徐银针 |
| 地址: | 413000 *** | 国省代码: | 湖南;43 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 分布式 电源 谐波 在线 检测 方法 装置 | ||
技术领域
本发明涉及电能质量分析领域,具体而言,涉及一种分布式电源谐波的在线检测方法及装置。
背景技术
近年来,以电力为中心的新一轮能源革命的序幕已经拉开,其目的是实现以智能电网为核心的低碳能源。于2012年4月26日在京召开的第六届电能质量国际研讨会,把电能质量与智能电网作为主题,并重点讨论了模块化新能源接入的电能质量问题、分布式电源相关的电能质量测量与评估问题等。由此可以看出,分布式电源的有效利用得到了学术界和科技界的大力关注。从分布式电源用多种小型连接电网的设备发电和储能的特点看,分布式电源具有不易出现规模性瓦解、可跟踪电力负荷的变化及采用热电联产及能源梯级式利用时可大大提高资源的利用率的特性。在我国大电网集中供电的背景下,分布式电源作为重要的电源补充将发挥巨大的作用。但分布式电源由于自身不稳定特性,使其在应用时电能质量问题比较突出,其中包括谐波、电压闪变等。另外在并网时,对电网造成很大的冲击。研究解决分布式电源电能质量问题具有重要的现实意义。
要解决分布式电源电能质量问题,先要对其电能质量参数进行检测,目前国内外通常的电能质量检测有在线检测、定期或不定期检测和专门测量三种,而从电能质量检测方法方面来看可大致分为时域仿真方法、频域检测方法、人工智能方法等几大类。基于人工智能的方法是目前研究的热点,人工神经网络是人工智能方法当中的一种,目前,它主要应用在电能质量的谐波测量、间谐波测量和扰动类型识别当中。它虽然在实际应用当中显示了其优越性,但也有一些不足之处。人工神经网络在投入运用之前,需要训练样本训练网络。而在某些应用中,要寻找到一组具有代表性的样本并不是一件容易的事情。当拥有这样一组较为理想的样本之后,训练网络时很可能会遇到不收敛或者收敛速度慢的问题;假若问题或者网络结构需要改变,那么网络就需要重新训练;训练当中还有可能出现过学习的问题。
综上可以看出现有的电能谐波检测方法不能满足电能质量检测的实际需求。
发明内容
本发明的目的在于提供一种分布式电源谐波的在线检测方法及装置,以满足电能质量检测中的实际需求。
第一方面,本发明实施例提供了一种分布式电源谐波的在线检测方法,包括:基于学习向量量化LVQ神经网络构建电能质量检测模型;利用粒子群算法PSO优化所述电能质量检测模型;利用优化后的所述电能质量检测模型,依据输入的电能质量信号中的谐波信息,对所述电能质量信号的谐波及间谐波扰动进行检测。
结合第一方面,本发明实施例提供了第一方面的第一种可能的实施方式,其中,所述电能质量检测模型包括分别由多个神经元组成的输入层、竞争层及输出层;所述输入层中的每个神经元分别与所述竞争层中的所有神经元连接,其中所述输入层的神经元与所述竞争层的神经元的一次连接对应一个连接权值;所述竞争层的每个神经元所对应的所有所述连接权值构成其自身的参考向量;所述竞争层中的神经元与所述输出层中的神经元一一对应连接;所述输出层,用于对外输出所述电能质量信号谐波及间谐波的检测结果。
结合第一方面,本发明实施例提供了第一方面的第二种可能的实施方式,其中,所述利用PSO优化所述电能质量检测模型包括:建立粒子群,其中所述粒子群中粒子的位置的分量与所述电能质量检测模型中的连接权值一一对应;利用粒子群迭代算法,迭代更新所述粒子群中所有粒子的位置和速度;其中,每次更新粒子的位置和速度后,均计算每个粒子的最优适应度位置,并利用得到的粒子的最优适应度位置获取粒子群的最优适应度位置,以及,利用所述粒子群的最优适应度位置更新所述电能质量检测模型中的所有所述连接权值;当所述粒子群迭代算法达到设定的迭代次数,或,所述电能质量检测模型的实际输出和预期输出的差值满足预设范围时,停止对粒子群中粒子位置和速度的更新。
结合第一方面,本发明实施例提供了第一方面的第三种可能的实施方式,其中,所述建立粒子群,包括:建立初始种群数目为n,以及迭代次数为T的粒子群,其中所述粒子群中的粒子的维度为所述电能质量检测模型中所有连接权值的总数目,并随机产生所述粒子群中所有粒子的初始位置和初始速度,以及确定每个粒子初始的最优适应度位置和所述粒子群初始的最优适应度位置;建立所述粒子群中粒子的位置的分量与所述电能质量检测模型中的连接权值的一一对应关系。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南城市学院,未经湖南城市学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510310187.X/2.html,转载请声明来源钻瓜专利网。





